Skip to main content
Log in

Synthesis of Silicon and Higher Manganese Silicide Bulk Nano-composites and Their Thermoelectric Properties

  • Topical Collection: International Conference on Thermoelectrics 2019
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, silicon and higher manganese silicide (HMS) bulk nanocomposites were synthesized, Si100-x(HMS)x, where x is 10–50, and their thermoelectric properties were studied. The powders of Si and Mn in a stoichiometric ratio were mixed by a ball milling, followed by hot-pressing to obtain the Si + HMS bulk nanocomposite samples. Every bulk sample was highly dense, with a density of over 90% of its theoretical value. The x-ray diffraction analysis revealed that only the Si and HMS phases, without any impurity phase, were obtained. The fractured surface morphology showed that the composites consisted of micro-sized Si matrix grains with the HMS nanodots homogenously distributed within the grains. The thermoelectric studies showed that thermal conductivity decreased with a higher concentration of HMS, mainly due to the reduction of lattice thermal conductivity. It was believed to be the presence of the HMS nanodots which effectively scattered phonon transport. Furthermore, the addition of HMS increased charge carrier concentration. Hence, the Seebeck coefficient decreased, and the electrical conductivity increased with increasing HMS content. However, the presence of the HMS nanodots also contributed to strong scattering of charge carriers. The charge mobility was reduced significantly for the composite samples compared to the bulk Si sample. Therefore, the electrical conductivity is relatively low compared to the reported values in the literature. The dimensionless figure-of-merit (ZT) was improved in the nanocomposite samples compared to the bulk Si sample, and the values were largest for the sample with x = 50.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  2. T.M. Tritt and M.A. Subramanian, MRS Bull. 31, 188 (2006).

    Article  Google Scholar 

  3. S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, and J. Fleurial, Adv. Funct. Mater. 19, 2445 (2009).

    Article  CAS  Google Scholar 

  4. T. Fu, X. Yue, H. Wu, C. Fu, T. Zhu, X. Liu, L. Hu, P. Ying, J. He, and X. Zhao, J. Materiomics 2, 141 (2016).

    Article  Google Scholar 

  5. K. Kurosaki, A. Yusufu, Y. Miyazaki, Y. Ohishi, H. Muta, and S. Yamanaka, Mater. Trans. 57, 1018 (2016).

    Article  CAS  Google Scholar 

  6. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. Engl. 48, 8616 (2009).

    Article  CAS  Google Scholar 

  7. J.A. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).

    Article  CAS  Google Scholar 

  8. D.M. Rowe, CRC Handbook of Thermoelectrics (Boca Raton: CRC Press, 1995)

  9. R.H. Shanks, D.P. Maycock, H.P. Sidles, and C.G. Danielson, Phys. Rev. 130, 1743 (1963).

    Article  CAS  Google Scholar 

  10. L. Weber and E. Gmelin, Appl. Phys. A 53, 136 (1991).

    Article  Google Scholar 

  11. N. Mingo, D. Hauser, P.N. Kobayashi, M. Plissonnier, and A. Shakouri, Nano Lett. 9, 711 (2009).

    Article  CAS  Google Scholar 

  12. Y. Ohishi, K. Kurosaki, T. Suzuki, H. Muta, S. Yamanaka, N. Uchida, T. Tada, and T. Kanayama, Thin Solid Films 534, 238 (2013).

    Article  CAS  Google Scholar 

  13. N. Uchida, T. Tada, Y. Ohishi, Y. Miyazaki, K. Kurosaki, and S. Yamanaka, J. Appl. Phys. 114, 134311 (2013).

    Article  Google Scholar 

  14. A. Yusufu, K. Kurosaki, Y. Ohishi, H. Muta, and S. Yamanaka, Jpn. J. Appl. Phys. 55, 061301 (2016).

    Article  Google Scholar 

  15. S. Tanusilp, K. Kurosaki, A. Yusufu, Y. Ohishi, H. Muta, and S. Yamanaka, J. Electron. Mater. 46, 3249 (2017).

    Article  CAS  Google Scholar 

  16. W.D. Lui, X.L. Shi, R. Moshwan, Q. Sun, L. Yang, Z.G. Chen, and J. Zou, J. Mater. Chem. C 7, 7212 (2019).

    Article  Google Scholar 

  17. W. Luo, H. Li, Y. Yan, Z. Lin, X. Tang, Q. Zhang, and C. Uher, Intermetallics 19, 404 (2011).

    Article  CAS  Google Scholar 

  18. Y. Sadia and Y. Gelbstein, J. Electro. Mater. 41, 1504 (2012).

    Article  CAS  Google Scholar 

  19. X. Shi, X. Shi, Y. Li, Y. He, L. Chen, and Q. Li, J. Appl. Phys. 116, 245104 (2014).

    Article  Google Scholar 

  20. D. Shin, K. Jang, S. Ur, and I. Kim, J. Electron. Mater. 42, 1756 (2013).

    Article  CAS  Google Scholar 

  21. N.Y.D. Truong, Ph. D. thesis, the Waterloo, (2015).

  22. M. Yoshikura and T. Itoh, J. Jpn. Soc. Powder Powder Metall. 57, 242 (2010).

    Article  CAS  Google Scholar 

  23. W.D. Lui, Z.G. Chen, and J. Zou, Adv. Energy Mater. 8, 18000056 (2018).

    Google Scholar 

  24. A.B. Gokhale and R. Abbaschian, Phase Equilibria 11, 468 (1990).

    Article  CAS  Google Scholar 

  25. J. Sakurai, Y. Yamamoto, and Y. Komura, J. Phys. Soc. Jpn. 57, 24 (1987).

    Article  Google Scholar 

  26. G.S. Nolas, J. Sharp, and J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Berlin: Springer, 2001).

  27. X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, S.M. Dresselhaus, G. Chen, and Z.F. Gen, Appl. Phys. Lett. 93, 193121 (2008).

    Article  Google Scholar 

  28. A. Nozariasbmarz, A. Agarwal, Z.A. Coutant, M.J. Hall, J. Liu, R. Liu, A. Malhortra, and P. Norouzzadeh, Jpn. J. Appl. Phys. 56, 05DA04 (2017).

    Article  Google Scholar 

  29. R.J. Drabble and J.H. Goldsmid, Thermal Conduction in Semiconductors (Oxford: Pergamon Press, 1961).

  30. B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Nano Lett. 12, 2077 (2012).

    Article  CAS  Google Scholar 

  31. M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, J.A. Minnich, Y.C. Lan, X. Wang, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Nano Lett. 11, 2225 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Thailand Research Fund (TRF) in cooperation with Synchrotron Light Research Institute (public organization) and Khon Kaen University (RSA6280020), the Research Network NANOTEC (RNN) program of the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Higher Education, Science, Research and Innovation and Khon Kaen University, and the National Research Council of Thailand through Khon Kaen University (6200071). D.P. would like to thank the Science Achievement Scholarship of Thailand (SAST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supree Pinitsoontorn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palaporn, D., Parse, N., Tanusilp, a. et al. Synthesis of Silicon and Higher Manganese Silicide Bulk Nano-composites and Their Thermoelectric Properties. J. Electron. Mater. 49, 2920–2927 (2020). https://doi.org/10.1007/s11664-020-07983-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-07983-5

Keywords

Navigation