Skip to main content

The Design and Preparation of Transparent Hybrid Composite Thin Films with Excellent Optical Properties and Improved Thermal Insulation by Optimized Combination of Nanomaterials

Abstract

For a single nano-optical material, it is difficult to possess high transmittance and adequately filter ultraviolet (UV) and infrared radiation (IR) simultaneously. Consequently, hybrid nano-optical materials comprising components of appropriate proportions for superimposing serviceable optical property are required. The design, optimization and processing of new composite blends with an aim to creating defect free thin films is far from a trivial endeavor. In this report, optimum composition and optical properties of hybrid nano-optical material has been determined and improved by crossover matching experiments and ball milling, respectively. Film preparation has been optimized to reduce defects expressed as cracks, tiny bubbles, strips, groove points, corrugation, and formation of acicular fibers by regulating proportion of polyvinyl butyral colloid and dry film processes. Two ameliorative processing conditions are exemplified where the resultant composite films possessed 86% maximum transmittance in the visible range and 90% and 50% blocking rate with respect to the IR and UV bands.

References

  1. K. Lundgren and T. Kjellstrom, Sustainability 5, 3116 (2013).

    Article  Google Scholar 

  2. A. Lopez, L. Sanchez, F. Doctor, H. Hagras, and V. Callaghan, IEEE Int. Conf. 1–7, 42 (2004).

    Google Scholar 

  3. G. Ramírez-Díaz, V. Nadal-Mora, and J. Piechocki, Renew. Sust. Energy Rev. 51, 138 (2015).

    Article  Google Scholar 

  4. Y.Z. Lu, B. Zhu, J. Wang, Y.M. Zhang, and J.J. Li, Int. J. Energy Res. 40, 717 (2016).

    Article  Google Scholar 

  5. M.M. Kabir and D.E. Demirocak, Int. J. Energy Res. 41, 1963 (2017).

    CAS  Article  Google Scholar 

  6. A.M. Omer, Renew. Sust. Energy Rev. 12, 2265 (2008).

    CAS  Article  Google Scholar 

  7. H.W. He, H. Jia, W.W. Huo, and M. Yan, Energy Procedia 105, 2518 (2017).

    Article  Google Scholar 

  8. Y. Song, S. Wu, and Y.Y. Yan, Int. J. Low. Carbon Technol. 10, 305 (2015).

    CAS  Article  Google Scholar 

  9. B.P. Jelle, A. Gustavsen, and R. Baetens, J. Build. Phys. 34, 99 (2010).

    CAS  Article  Google Scholar 

  10. C.S. Long, H.H. Lub, D.F. Lii, and J.L. Huang, Surf. Coat. Technol. 284, 75 (2015).

    CAS  Article  Google Scholar 

  11. F. Shi, J.X. Liu, X.L. Dong, Q. Xu, J.Y. Lou, and H.C. Ma, J. Mater. Sci. Technol. 30, 342 (2014).

    CAS  Article  Google Scholar 

  12. L.H. Xiao, Y.C. Su, X.Z. Zhou, H.Y. Chen, J. Tan, T. Hu, J. Yan, and P. Peng, Appl. Phys. Lett. 101, 041913 (2012).

    Article  Google Scholar 

  13. Y. Wua, L. Zhang, G.H. Min, H.S. Min, B.H. Gao, H.H. Liu, S.L. Xing, and T. Pang, Appl. Surf. Sci. 384, 413 (2016).

    Article  Google Scholar 

  14. X.M. Luo, P. Zhang, R. Liu, W.H. Li, B.H. Ge, and M. Cao, Polym. Int. 65, 415 (2016).

    CAS  Article  Google Scholar 

  15. S. Dubin, S. Gilje, K. Wang, V.C. Tung, K. Cha, A.S. Hall, J. Farrar, R. Varshneya, Y. Yang, and R.B. Kaner, ACS Nano 4, 3845 (2010).

    CAS  Article  Google Scholar 

  16. G.J. Zhang, Z.H. Chen, X.R. Zeng, F. Yu, and J. Wang, J. Coat. Technol. Res. 8, 505 (2011).

    CAS  Article  Google Scholar 

  17. H. Huang, M.H. Ng, Y.L. Wu, and L.B. Kong, Mater. Des. 88, 384 (2015).

    CAS  Article  Google Scholar 

  18. S. Ray, U. Dutta, R. Das, and P. Chatterjee, J. Phys. D Appl. Phys. 40, 2445 (2007).

    CAS  Article  Google Scholar 

  19. H.F. Zhou, H. Wang, X.Y. Tian, K. Zheng, Z.F. Wu, X. Ding, and X.Z. Ye, Compos. Sci. Technol. 94, 105 (2014).

    CAS  Article  Google Scholar 

  20. T. Hu, Y.C. Su, S.D. Liu, H.B. Tang, S.J. Mu, and Z.X. Hu, Appl. Phys. A-Mater. 116, 1951 (2014).

    CAS  Article  Google Scholar 

  21. T. Hu, Y.C. Su, I.R. Baxendale, J. Tan, H.B. Tang, L.H. Xiao, F. Zheng, and P. Ning, Curr. Appl. Phys. 17, 584 (2017).

    Article  Google Scholar 

  22. H. Gliemann, A.T. Almeida, D.F.S. Petri, and T. Schimmel, Surf. Interface Anal. 39, 1 (2007).

    CAS  Article  Google Scholar 

  23. B.H. Liu, J. Xu, and Y.B. Li, Adv. Mater. Sci. Eng. 16, 1 (2014).

    Article  Google Scholar 

  24. S. Foghmoes, F. Teocoli, K. Brodersen, T. Klemenso, and M.D. Negra, J. Eur. Ceram. Soc. 36, 3441 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.05.043.

    CAS  Article  Google Scholar 

  25. Y.V. Kuznetsova and A.A. Rempel, Inorg. Mater. 51, 215 (2015).

    CAS  Article  Google Scholar 

  26. O. Prakash and A. Moitra, Comput. Mater. Sci. 295–297, 2615 (2011).

    Google Scholar 

  27. T.T. Liu, H. Luo, and J. Ma, Eur. Phys. J. E 39, 24 (2016).

    Article  Google Scholar 

  28. P.K. Giri, S. Bhattacharyya, D.K. Singh, R. Kesavamoorthy, B.K. Panigrahi, and K.G.M. Nair, J. Appl. Phys. 102, 093515 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Te Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, T., Su, Y., Baxendale, I.R. et al. The Design and Preparation of Transparent Hybrid Composite Thin Films with Excellent Optical Properties and Improved Thermal Insulation by Optimized Combination of Nanomaterials. J. Electron. Mater. 49, 1808–1818 (2020). https://doi.org/10.1007/s11664-019-07888-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07888-y

Keywords

  • Nano-optical materials
  • transparent thermal insulation
  • composite functional thin film
  • optical property
  • ball milling
  • colloid
  • film defect