Skip to main content
Log in

Effect of Structure on Sensor Properties of Oxygen-Deficient Perovskites, A2BB′O5 (A = Ca, Sr; B = Fe; B′ = Fe, Mn) for Oxygen, Carbon Dioxide and Carbon Monoxide Sensing

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The remarkable sensor properties of a series of oxygen-deficient perovskites, Ca2Fe2O5, Sr2Fe2O5, Ca2FeMnO5 and Sr2FeMnO5, and the impact of structural order on gas sensing response have been investigated. The sensor behavior of defect-ordered oxygen-deficient perovskites have not been studied before. Among the four materials investigated in this work, the ordered compound, Ca2Fe2O5, shows remarkably versatile sensing properties for all three gases, oxygen, carbon dioxide and carbon monoxide. This material is a semiconductor, and its electrical charge-transport increases systematically as a function of oxygen partial pressure, and decreases as a function of carbon dioxide and carbon monoxide concentrations. The recovery of charge-transport upon completion of gas sensing cycles for all gases is nearly perfect, and its crystal structure remains intact, as confirmed by Rietveld refinements with powder x-ray diffraction data. The variation of gas sensing properties as a function of structure and composition is interesting. Most remarkable is the versatility of Ca2Fe2O5, and its sensitivity to O2, CO2 and CO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Yamazoe and N. Miura, Sens. Actuators B 20, 95 (1994).

    CAS  Google Scholar 

  2. T. Takeuchi, Sens. Actuators B. 14, 109 (1988).

    CAS  Google Scholar 

  3. H.-H. Möbius, J. Solid State Chem. 8, 94 (2004).

    Google Scholar 

  4. C.O. Park, J.W. Fergus, N. Miura, J. Park, and A. Choi, Ionics 15, 261 (2009).

    CAS  Google Scholar 

  5. T. Maruyama, S. Sasaki, and Y. Saito, Solid State Ion. 23, 107 (1987).

    CAS  Google Scholar 

  6. H.J. Beie and A. Gnörich, Sens. Actuators B Chem. 4, 393 (1991).

    CAS  Google Scholar 

  7. V.K. Josepovits, O. Krafcsik, G. Kiss, and I.V. Perczel, Sens. Actuators B Chem. 48, 373 (1998).

    CAS  Google Scholar 

  8. J. Zhu, C. Ren, G. Chen, C. Yu, J. Wu, and H. Mu, Sens. Actuators B Chem. 32, 209 (1996).

    CAS  Google Scholar 

  9. S. Mulmi and V. Thangadurai, Ionics 22, 1927 (2016).

    CAS  Google Scholar 

  10. H. Meixner and U. Lampe, Sens. Actuators B Chem. 33, 198 (1996).

    CAS  Google Scholar 

  11. J. Nisar, Z. Topalian, A. De Sarkar, L. Österlund, and R. Ahuja, ACS Appl. Mater. Interfaces 5, 8516 (2013).

    CAS  Google Scholar 

  12. S.R. Morrison, Sens. Actuators 2, 329 (1981).

    Google Scholar 

  13. M. Chen, Z. Wang, D. Han, F. Gu, and G. Guo, J. Phys. Chem. C 115, 12763 (2011).

    CAS  Google Scholar 

  14. M. Bektas, D. Schönauer-Kamin, G. Hagen, A. Mergner, C. Bojer, S. Lippert, W. Milius, J. Breu, and R. Moos, Sens. Actuators B Chem. 190, 208 (2014).

    CAS  Google Scholar 

  15. Z.-G. Zhou, Z.-L. Tang, and Z.-T. Zhang, Sens. Actuators B Chem. 93, 356 (2003).

    CAS  Google Scholar 

  16. M.L. Post, J.J. Tunney, D. Yang, X. Du, and D.L. Singleton, Sens. Actuators B Chem. 59, 190 (1999).

    CAS  Google Scholar 

  17. J.W. Fergus, Sens. Actuators B Chem. 123, 1169 (2007).

    CAS  Google Scholar 

  18. M.J. Akhtar, Z.N. Akhtar, J.P. Dragun, and C.R.A. Catlow, Solid State Ion. 104, 147 (1997).

    CAS  Google Scholar 

  19. Z.G. Zhou, Z.L. Tang, Z.T. Zhang, and W. Wlodarski, Sens. Actuators B Chem. 77, 22 (2001).

    CAS  Google Scholar 

  20. S.M. Bukhari and J.B. Giorgi, Sens. Actuators B Chem. 181, 153 (2013).

    CAS  Google Scholar 

  21. C.M. Chiu and Y.H. Chang, Mater. Sci. Eng. A. 266, 93 (1999).

    Google Scholar 

  22. Y. Zhang, G. Yang, G. Chen, R. Ran, W. Zhou, and Z. Shao, ACS Appl. Mater. Interfaces 8, 3003 (2016).

    CAS  Google Scholar 

  23. E. Bartolomeo, M.L. Grilli, J.W. Yoon, and E. Traversa, J. Am. Ceram. Soc. 87, 1883 (2004).

    Google Scholar 

  24. J. Riegel, H. Neumann, and H.M. Wiedenmann, Solid State Ion. 152–153, 783 (2002).

    Google Scholar 

  25. M. Ismail, W. Liu, M.S.C. Chan, M.T. Dunstan, and S.A. Scott, Energy Fuels 30, 6220 (2016).

    CAS  Google Scholar 

  26. F. Saib, M. Mekiri, B. Bellal, M. Chibane, and M. Trari, Russ. J. Phys. Chem. A 91, 1562 (2017).

    CAS  Google Scholar 

  27. A. Fluri, E. Gilardi, M. Karlsson, V. Roddatis, M. Bettinelli, I.E. Castelli, T. Lippert, and D. Pergolesi, J. Phys. Chem. C 121, 21797 (2017).

    CAS  Google Scholar 

  28. J. Berggren, Acta Chem. Scand. 25, 3616 (1975).

    Google Scholar 

  29. H. Dhondt, A.M. Abakumov, J. Hadermann, A.S. Kalyuzhnaya, M.G. Rozova, E.V. Antipov, and G. Van Tendeloo, Chem. Mater. 20, 7188 (2008).

    CAS  Google Scholar 

  30. Y. Nakahara, S. Kato, M. Sugai, Y. Ohshima, and K. Makino, Mater. Lett. 30, 163 (1997).

    CAS  Google Scholar 

  31. I. Kagomiya, Y. Hirota, K.-I. Kakimoto, K. Fujii, M. Shiraiwa, M. Yashima, A. Fuwa, and S. Nakamura, Phys. Chem. Chem. Phys. 19, 31194 (2017).

    CAS  Google Scholar 

  32. H. Watanabe, J. Phys. Soc. Jpn. 12, 515 (1957).

    CAS  Google Scholar 

  33. F. Ramezanipour, B. Cowie, S. Derakhshan, J.E. Greedan, and L.M.D. Cranswick, J. Solid State Chem. 182, 153 (2009).

    CAS  Google Scholar 

  34. F. Ramezanipour, J.E. Greedan, J. Siewenie, T. Proffen, D.H. Ryan, A.P. Grosvenor, and R.L. Donaberger, Inorg. Chem. 50, 7779 (2011).

    CAS  Google Scholar 

  35. T. Takeda, Y. Yamaguchi, S. Tomiyoshi, M. Fukase, M. Sugimoto, and H. Watanabe, J. Phys. Soc. Jpn. 24, 446 (1968).

    CAS  Google Scholar 

  36. B.H. Toby, J. Appl. Crystallogr. 34, 210 (2001).

    CAS  Google Scholar 

  37. A.C. Larson and R. B. Von Dreele, (Los Alamos National Laboratory: Los Alamos, 1994).

  38. S.B. Karki and F. Ramezanipour, Mater. Today Chem. 13, 25 (2019).

    CAS  Google Scholar 

  39. F. Ramezanipour, J.E. Greedan, L.M.D. Cranswick, V.O. Garlea, R.L. Donaberger, and J. Siewenie, J. Am. Chem. Soc. 134, 3215 (2012).

    CAS  Google Scholar 

  40. S. Mulmi, R.K. Hona, J.B. Jasinski, and F. Ramezanipour, J. Solid State Electrochem. 22, 2329 (2018).

    CAS  Google Scholar 

  41. R. Ramamoorthy, P.K. Dutta, and S.A. Akbar, J. Mater. Sci. 38, 4271 (2003).

    CAS  Google Scholar 

  42. S. Akbar, P. Dutta, and C. Lee, Int. J. Appl. Ceram. Technol. 3, 302 (2006).

    CAS  Google Scholar 

  43. C.H. Yo, I.Y. Jung, K.H. Ryu, K.S. Ryu, and J.H. Choy, J. Solid State Chem. 114, 265 (1995).

    CAS  Google Scholar 

  44. R.K. Hona and F. Ramezanipour, Mater. Res. Express 5, 076307 (2018).

    Google Scholar 

  45. W. Menesklou, H.-J. Schreiner, K.H. Härdtl, and E. Ivers-Tiffée, Sens. Actuators B Chem. 59, 184 (1999).

    CAS  Google Scholar 

  46. Y. Liu, J. Parisi, X. Sun, and Y. Lei, J. Mater. Chem. A 2, 9919 (2014).

    CAS  Google Scholar 

  47. M. Bartic, M. Ogita, M. Isai, C.-L. Baban, and H. Suzuki, J. Appl. Phys. 102, 023709 (2007).

    Google Scholar 

  48. J.P. Hodges, S. Short, J.D. Jorgensen, X. Xiong, B. Dabrowski, S.M. Mini, and C.W. Kimball, J. Solid State Chem. 151, 190 (2000).

    CAS  Google Scholar 

  49. Y. Hosaka, N. Ichikawa, T. Saito, M. Mizumaki, and Y. Shimakawa, J. Jpn. Soc. Powder Powder Metall 63, 605 (2016).

    CAS  Google Scholar 

  50. V. Thangadurai and W. Weppner, Electrochim. Acta 49, 1577 (2004).

    CAS  Google Scholar 

  51. A.K.M.S. Chowdhury, S.A. Akbar, S. Kapileshwar, and J.R. Schorr, J. Electrochem. Soc. 148, G91 (2001).

    CAS  Google Scholar 

  52. S. Mulmi, A. Hassan, P. Pereira-Almao, and V. Thangadurai, Sens. Actuators B Chem. 178, 598 (2013).

    CAS  Google Scholar 

  53. M. Liao, J. Liu, L. Sang, D. Coathup, J. Li, M. Imura, Y. Koide, and H. Ye, Appl. Phys. Lett. 106, 083506 (2015).

    Google Scholar 

  54. X. Zhou, O. Toft Sørensen, and Y. Xu, Sens. Actuators B Chem. 41, 177 (1997).

    CAS  Google Scholar 

  55. T. Schwebel, M. Fleischer, and H. Meixner, Sens. Actuators B Chem. 65, 176 (2000).

    CAS  Google Scholar 

  56. S.V. Manorama, N. Izu, W. Shin, I. Matsubara, and N. Murayama, Sens. Actuators B Chem. 89, 299 (2003).

    CAS  Google Scholar 

  57. Y. Xu, X. Zhou, and O.T. Sorensen, Sens. Actuators B Chem. 65, 2 (2000).

    CAS  Google Scholar 

  58. T. Motohashi, Y. Hirano, Y. Masubuchi, K. Oshima, T. Setoyama, and S. Kikkawa, Chem. Mater. 25, 372 (2013).

    CAS  Google Scholar 

  59. F.M. Orr and J.J. Taber, Science 224, 563 (1984).

    CAS  Google Scholar 

  60. D. Gerard and E.J. Wilson, J. Environ. Econ. Manag. 90, 1097 (2009).

    Google Scholar 

  61. A.C. Lang, M. Fleischer, and H. Meixner, Sens. Actuators B Chem. 66, 80 (2000).

    CAS  Google Scholar 

  62. T. Schwebel, M. Fleischer, H. Meixner, and C.D. Kohl, Sens. Actuators B Chem. 49, 46 (1998).

    CAS  Google Scholar 

  63. S. Mulmi and V. Thangadurai, J. Electrochem. Soc. 160, B95 (2013).

    CAS  Google Scholar 

  64. U. Lampe, J. Gerblinger, and H. Meixner, Sens. Actuators B Chem. 25, 657 (1995).

    CAS  Google Scholar 

  65. P.P. Sahay, S. Tewari, S. Jha, and M. Shamsuddin, J. Mater. Sci. 40, 4791 (2005).

    CAS  Google Scholar 

  66. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, Sens. Actuators B Chem. 160, 580 (2011).

    CAS  Google Scholar 

  67. K. Fan, H. Qin, L. Wang, L. Ju, and J. Hu, Sens. Actuator B Chem. 177, 265 (2013).

    CAS  Google Scholar 

  68. P. Zhang, H. Qin, H. Zhang, W. Lü, and J. Hu, J. Rare Earths 35, 602 (2017).

    CAS  Google Scholar 

  69. T.V. Belysheva, V.F. Gromov, G.N. Gerasimov, E.Y. Spiridonova, S.A. Bondarenko, and L.I. Trakhtenberg, Russ. J. Phys. Chem. A 85, 1021 (2011).

    CAS  Google Scholar 

  70. L. Mädler, T. Sahm, A. Gurlo, J.-D. Grunwaldt, N. Barsan, U. Weimar, and S.E. Pratsinis, J. Nanopart. Res. 8, 783 (2006).

    Google Scholar 

  71. P. Shankar and J.B.B. Rayappan, Sci. Lett. J. 4, 126 (2015).

    Google Scholar 

  72. S. Mulmi, R. Kannan, and V. Thangadurai, Solid State Ion. 262, 274 (2014).

    CAS  Google Scholar 

  73. F. Sun, X. Li, L. Liu, and J. Wang, Sens. Actuators B Chem. 184, 220 (2013).

    CAS  Google Scholar 

  74. L. Chevallier, E. Di Bartolomeo, M.L. Grilli, M. Mainas, B. White, E.D. Wachsman, and E. Traversa, Sens. Actuators B Chem. 129, 591 (2008).

    CAS  Google Scholar 

Download references

Acknowledgments

F.R. thanks the Conn Center for Renewable Energy Research. This work is supported in part by the National Science Foundation under Cooperative Agreement No. 1355438.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Ramezanipour.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karki, S.B., Hona, R.K. & Ramezanipour, F. Effect of Structure on Sensor Properties of Oxygen-Deficient Perovskites, A2BB′O5 (A = Ca, Sr; B = Fe; B′ = Fe, Mn) for Oxygen, Carbon Dioxide and Carbon Monoxide Sensing. J. Electron. Mater. 49, 1557–1567 (2020). https://doi.org/10.1007/s11664-019-07862-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07862-8

Keywords

Navigation