Skip to main content

Advertisement

Log in

Investigation on Microstructural, Electrical and Optical Properties of Nd-Doped BaCo0.01Ti0.99O3 Perovskite

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of microstructural, electrical and optical properties of (Ba1−xNdx)(Co0.01Ti0.99)O3 (BNCT) (x = 0.00%, 0.25%, 0.50% and 0.75%) ceramics have been prepared the by sol–gel combustion technique. The structural phase evolution confirms tetragonal to pseudo-cubic phase with 0.50% and 0.75% doping of Nd3+ ions. The Rietveld refinement analysis of BNCT ceramics in terms of bond length Ba-O, Ti-O and Ba-Ti have been discussed, and it also confirmed the lattice parameters systematically. The co-doping of Nd3+ ions for Ba2+ ion at A-site leads to an increase of the energy bandgap (Eg) of the samples lying between 2.93 eV to 3.19 eV, which is ascertained by the blue shift as observed from the UV–visible spectroscopy. The intensity of photoluminescence (PL) emission was found to decrease with an increase in Nd3+ concentrations and the deconvolution of the luminescence peaks were discussed in terms of the role of defects, oxygen vacancies, grain size, and induced lattice strain. The complex permittivity (ɛ′ + ″), impedance plot and AC conductivity (σ′) were examined at room temperature within the frequency range from 1 Hz to 1 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.M. Vijatović, J.D. Bobić, and B.D. Stojanović, Sci. Sinter. 40, 155 (2008).

    Article  Google Scholar 

  2. S. Nayak, B. Sahoo, T.K. Chaki, and D. Khastgir, RSC Adv. 4, 1212 (2014).

    Article  CAS  Google Scholar 

  3. M.K. Mahata, K. Kumar, and V.K. Rai, Spectrochim. Acta A 124, 285 (2014).

    Article  CAS  Google Scholar 

  4. L.R. Prado, N.S. de Resende, R.S. Silva, S.M.S. Egues, and G.R. Salazar-Band, Chem. Eng. Process. 103, 12 (2016).

    Article  CAS  Google Scholar 

  5. Ch Rayssi, S. El Kossi, J. Dhahri, and K. Khirouni, RSC Adv. 8, 17139 (2018).

    Article  CAS  Google Scholar 

  6. S. Ray, Y.V. Kolen’ko, K.A. Kovnir, O.I. Lebedev, S. Turner, T. Chakraborty, R. Erni, T. Watanabe, G. Van Tendeloo, M. Yoshimura, and M. Itoh, Nanotechnology 23, 025702 (2012).

    Article  Google Scholar 

  7. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G.A. Rossetti, and J. Rödel, Appl. Phys. Rev. 4, 041305 (2017).

    Article  Google Scholar 

  8. The-Long Phan, P. Zhang, D.S. Yang, T.D. Thanh, D.A. Tuan, and S.C. Yu, J. Appl. Phys. 113, 17305 (2013).

    Article  Google Scholar 

  9. D.-D. Han, D.-Y. Lu, and X.-Y. Sun, J. Alloy. Compd. 576, 24 (2013).

    Article  Google Scholar 

  10. A.G.A. Darwish, Y. Badr, M. El Shaarawy, N.M.H. Shash, and I.K. Battish, J. Alloy. Compd. 489, 451 (2010).

    Article  CAS  Google Scholar 

  11. Zhonghua Yao, Hanxing Liu, Yan Liu, Wu Zhaohui, Zongyang Shen, Yang Liu, and Minghe Cao, Mater. Chem. Phys. 109, 475 (2008).

    Article  CAS  Google Scholar 

  12. L. Padilla-Campos, D.E. Diaz-Droguett, R. Lavín, and S. Fuentes, J. Mol. Struct. 1099, 502 (2015).

    Article  CAS  Google Scholar 

  13. T. Shi, Y. Chen, and X. Guo, Progr Mater Sci 80, 77 (2016).

    Article  CAS  Google Scholar 

  14. E. Venkata Ramana, F. Figueiras, A. Mahajan, D.M. Tobaldi, B.F.O. Costa, M.P.F. Graça, and M.A. Valente, J. Mater. Chem. C 4, 1066 (2016).

    Article  CAS  Google Scholar 

  15. E. Devi, B.J. Kalaiselvi, K. Madhan, D. Vanidha, S.S. Meena, and R. Kannan, J. Appl. Phys. 124, 8 (2018).

    Google Scholar 

  16. Lu Da-Yong and Yong-Shun Zheng, J. matlet. 223, 25 (2018).

    Google Scholar 

  17. H. Lemziouka, R. Moubah, F.Z. Rachid, Y. Jouane, E.K. Hlil, M. Abid, and H. Lassri, J. Ceram. Int. 42, 19402 (2016).

    Article  CAS  Google Scholar 

  18. The-Long Phan, P.D. Thang, T.A. Ho, T.V. Manh, T.D. Thanh, V.D. Lam, N.T. Dang, and S.C. Yu, J. Appl. Phys. 117, 17D904 (2015).

    Article  Google Scholar 

  19. G. George and S. Anandhan, RSC Adv. 5, 81429 (2015).

    Article  CAS  Google Scholar 

  20. M. Muralidharan, V. Anbarasu, A. ElayaPerumal, and K. Sivakumar, J. Mater. Sci.: Mater. Electron. 26, 6875 (2015).

    CAS  Google Scholar 

  21. Fenggong Wang, Ilya Grinberg, and Andrew M. Rappe, Appl. Phys. Lett. 104, 152903 (2014).

    Article  Google Scholar 

  22. M. Ganguly, S.K. Rout, T.P. Sinha, S.K. Sharma, H.Y. Park, C.W. Ahn, and I.W. Kim, J. Alloy. Compd. 579, 473 (2013).

    Article  CAS  Google Scholar 

  23. L.V. Maneeshya, V.S. Anitha, S.S. Lekshmy, I. John Berlin Prabitha, B. Nair Georgi, P. Daniel, P.V. Thomas, and K. Joy, J. Mater. Sci.: Mater. Electron. 24, 848 (2013).

    CAS  Google Scholar 

  24. S.K. Ghosh and S.K. Rout, Curr. Appl. Phys. 16, 989 (2016).

    Article  Google Scholar 

  25. A.S.H. Hameed, C. Karthikeyan, A.P. Ahamed, N. Thajuddin, N.S. Alharbi, S.A. Alharbi, and G. Ravi, Sci. Rep. 6, 24312 (2016).

    Article  CAS  Google Scholar 

  26. Manjit Borah and Dambarudhar Mohanta, J. Appl. Phys. 112, 124321 (2012).

    Article  Google Scholar 

  27. L.V. Maneeshya, P.V. Thomas, and K. Joy, J. Optmat. 46, 304 (2015).

    CAS  Google Scholar 

  28. L.V. Maneeshya, S. SujathaLekshmy, P.V. Thomas, and K. Joy, J. Mater. Sci.: Mater. Electron. 25, 2507 (2014).

    CAS  Google Scholar 

  29. Neha Sharma, Anurag Gaur, and U.K. Gaur, J. Ceram. Int. 40, 16441 (2014).

    Article  CAS  Google Scholar 

  30. Qiaomei Sun, Gu Qilin, Kongjun Zhu, Rongying Jin, Jinsong Liu, Jing Wang, and Jinhao Qiu, Scientific Reports 7, 42274 (2017).

    Article  CAS  Google Scholar 

  31. Kuldeep Chand Verma and R.K. Kotnala, Mater. Res. Express 3, 055006 (2016).

    Article  Google Scholar 

  32. N. Sharma, A. Gaur, and U.K. Gaur, Ceram. Int. 40, 16441 (2014).

    Article  CAS  Google Scholar 

  33. Wu Haidong, Pu Yongping, Zhuo Wang, and Kai Chen, J. Matlet. 76, 222 (2012).

    Google Scholar 

  34. M.-F. Lin, V.K. Thakur, E.J. Tan, and P.S. Lee, J. Mater. Chem. 2, 116500 (2011).

    Google Scholar 

  35. Alka Rania, Jayant Kolteb, and Prakash Gopalan, J. Ceram. Int. 44, 16703 (2018).

    Article  Google Scholar 

  36. T.A.T. Sulong, R.A.M. Osman, M.S. Idris, and Z.A.Z. Jamal, EPJ Web Conf 162, 01050 (2017).

    Article  Google Scholar 

  37. W.-B. Li, D. Zhou, B. He, F. Li, L.-X. Pang, and S.-G. Lu, J. Alloy. Compd. 685, 418 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Murugaraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhan, K., Murugaraj, R. Investigation on Microstructural, Electrical and Optical Properties of Nd-Doped BaCo0.01Ti0.99O3 Perovskite. J. Electron. Mater. 49, 377–384 (2020). https://doi.org/10.1007/s11664-019-07751-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07751-0

Keywords

Navigation