Skip to main content
Log in

Ultrasound-Assisted Method for Preparation of Ag2S Nanostructures: Fabrication of Au/Ag2S-PVA/n-Si Schottky Barrier Diode and Exploring Their Electrical Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Au/n-Si metal/semiconductor (MS) Schottky barrier diodes with and without (Ag2S-PVA) interlayer were prepared by the ultrasound-assisted method and their electric and dielectric properties were examined by using current–voltage (IV) and capacitance–voltage (CV) measuring devices. The structural, optical and morphological characteristics of the (Ag2S-PVA) were studied by x-ray diffraction (XRD), scanning electron microscopy (SEM) and UV–Visible spectroscopy. The observed peaks in the XRD pattern are related to the α-phase of silver sulfide. The UV–Visible spectrum of (Ag2S-PVA) shows the quantum confinement and SEM image proves the grain size in nano-scale. The ideality factor (n) and barrier height (BH) at zero bias (ΦB0(IV)) were acquired from the IV data. On the other hand; Fermi energy (EF), donor concentration atoms (ND), and BH (ΦB(CV)) values were obtained from the reverse bias CV data. The voltage-dependent resistance profile (Ln(Ri)–V) was obtained by applying Ohm’s law and also by the Nicollian–Brews methods. Also, considering the voltage-dependent n and BH, Nss–(EcEss) profile was acquired from the forward biases IV characteristics. Depending on high, intermediate and low biases ln(I)–Ln(V) curves have three linear regions with distinct slopes for MS and MPS structures. The predominant current-transport mechanisms were obtained in related regions via trap-charge limited current and space-charge limited current, respectively. These outcomes indicate that the (Ag2S-PVA) interlayer enhanced the performance of the diode considerably in terms of high rectifier rate (RR), shunt resistance (Rsh), and low surface states (Nss) and series resistance (Rs). Thus, the (Ag2S-PVA) interlayer can be used in MS type diode instead of a traditional insulator layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Goyal, Nanomaterials and Nanocomposites (Boca Raton: CRC Press, 2018).

    Google Scholar 

  2. P. Biehl, M. vonder Lühe, S. Dutz, and F.H. Schacher, Polymers 10, 1 (2018).

    Google Scholar 

  3. T. Jin, Q. Han, Y. Wang, and L. Jiao, Small 14, 1703086 (2018).

    Google Scholar 

  4. B. Ajitha, Y.A. Kumar Reddy, and P. Sreedhara Reddy, Powd. Technol. 269, 110 (2015).

    CAS  Google Scholar 

  5. G. Anandha Babu, G. Ravi, Y. Hayakawa, and M. Kumaresavanji, J. Magn. Magn. Mater. 375, 184 (2015).

    CAS  Google Scholar 

  6. T. Ali and A. Venkataraman, Int. J. Adv. Eng. Technol. 7, 122 (2014).

    Google Scholar 

  7. Y. Azizian-Kalandaragh, F. Sedaghatdoust-Bodagh, and A. Habibi-Yangjeh, Superlatt. Microstruct. 81, 150 (2015).

    Google Scholar 

  8. K.T. Al-Rasoul, I.M. Ibrahim, M. Ali, and R.M. Al-Haddad, Int. J. Sci. Technol. Res. 3, 213 (2014).

    Google Scholar 

  9. P. Saha, T.P. Majumder, and S.C. Debnath, Int. J. Eng. Sci. Innov. Technol. 3, 86 (2014).

    Google Scholar 

  10. Y. Azizian-Kalandaragh, Optoelectron. Adv. Mater.-Raped Commun. 10, 201 (2016).

    CAS  Google Scholar 

  11. S. Boughdachi, Y. Azizian-Kalandaragh, Y. Badali, and Ş. Altındal, J. Mater. Sci.: Mater. Electron. 28, 17948 (2017).

    CAS  Google Scholar 

  12. Y. Azizian-Kalandaragh, F. Sedaghatdoust-Bodagh, E. Alizadeh-Gheshlaghi, and A. Khodayari, J. Nanoelectron. Optoelectron. 12, 1 (2017).

    Google Scholar 

  13. U.M. Jadhav, S.N. Patel, and R.S. Patil, Res. J. Chem. Sci. 3, 69 (2013).

    CAS  Google Scholar 

  14. H. Dlala, M. Amlouk, S. Belgacem, P. Girard, and D. Barjon, Eur. Phys. J. 2, 13 (1998).

    CAS  Google Scholar 

  15. T.G. Schaaff and A.J. Rodinone, J. Phys. Chem. B. 107, 10416 (2003).

    CAS  Google Scholar 

  16. N. Belman, Y. Golan, and A. Berman, Cryst. Growth Des. 5, 439 (2005).

    CAS  Google Scholar 

  17. A.P. Yadav and R.R. Pradhananga, J. Nepal Chem. Soc. 15, 19 (1996).

    CAS  Google Scholar 

  18. W. Lou, X. Wang, M. Chen, W. Liu, and J. Hao, Nanotechnology 19, 225607 (2008).

    Google Scholar 

  19. R.G. Cope and H.J. Oldsmid, Br. J. Appl. Phys. 16, 501 (1965).

    Google Scholar 

  20. R. Zamiri, H. Abbastabar Ahangar, A. Zakaria, G. Zamiri, M. Shabani, B. Singh, and J.M.F. Ferreira, Chem. Cent. J. 9, 28 (2015).

    Google Scholar 

  21. A.K. Abass, Solar Energy Mater. 17, 375 (1988).

    CAS  Google Scholar 

  22. J. Joo, H.B. Na, T. Yu, J.H. Yu, Y.W. Kim, F. Wu, J.Z. Zhang, and T. Hyeon, J. Am. Chem. Soc. 12, 11100 (2003).

    Google Scholar 

  23. D. Qin, L. Zhang, G. He, and Q. Zhang, Mater. Res. Bull. 48, 3644 (2013).

    CAS  Google Scholar 

  24. L. Wang, M. Lu, X. Wang, Y. Yu, X. Zhao, P. Lv, H. Song, X. Zhang, L. Luo, C. Wu, Y. Zhang, and J. Jie, J. Mater. Chem. A. 1, 1148 (2013).

    CAS  Google Scholar 

  25. Z. Yu-ming, Z. Yi-men, P. Alexandrov, and J.H. Zhao, Chin. J. Semicond. 22, 265 (2001).

    Google Scholar 

  26. D. Korucu and A. Turut, Int. J. Electron. 101, 1595 (2014).

    CAS  Google Scholar 

  27. Z. Haiyan, Y. Zhizhen, H. Jingyun, L. Bei, X. Jinghong, and Z. Binghui, Chin. J. Semicond. 24, 622 (2003).

    Google Scholar 

  28. I. Mukherjee, S. Senapati, D. Mitra, A.K. Ras, S.P. Das, and S.P. Moulik, J. Colloids Surf. A: Physicochem. Eng. Asp. 360, 142 (2010).

    CAS  Google Scholar 

  29. M. Chen, Y. Xie, H.Y. Chen, Z.P. Qiao, and Y.T. Qian, J. Colloid Interf. Sci. 47, 237 (2001).

    Google Scholar 

  30. M. Liu, Z. Xu, B. Li, C. Lin, D. Bai, N. Shan, and W. You, Mater. Lett. 65, 555 (2011).

    CAS  Google Scholar 

  31. H.M. Pathan, P.V. Salunke, B.R. Sankpal, and C.D. Lokhande, Mater. Chem. Phys. 72, 105 (2011).

    Google Scholar 

  32. H. Nozaki, M. Onoda, K. Yukino, K. Kurashima, K. Kosuda, H. Maki, and S. Hishita, J. Solid State Chem. 177, 1165 (2004).

    CAS  Google Scholar 

  33. M. Chen and L. Gao, Mater. Letter. 60, 1059 (2006).

    CAS  Google Scholar 

  34. S.S. Dhumure and C.D. Lokhande, Thin Solid Films 1, 240 (1994).

    Google Scholar 

  35. M.M. El-Nahass, A.A.M. Farag, E.M. Ibrahim, and S. Abdel-Rahman, Vacuum 72, 453 (2004).

    CAS  Google Scholar 

  36. W. Yang, L. Zhang, Y. Hu, Y. Zhong, H. BinWu, and X.W. Lou, Angew. Chem. Int. Ed. 51, 11501 (2012).

    CAS  Google Scholar 

  37. M. Kristl, S. Gyergyek, and J. Kristl, Mater. Express. 5, 359 (2015).

    CAS  Google Scholar 

  38. X. Wen, S. Wang, Y. Xie, X.-Y. Li, and S. Yang, J. Phys. Chem. B. 109, 10100 (2005).

    CAS  Google Scholar 

  39. V.G. Debabov, T.A. Voeikova, A.S. Shebanova, K.V. Shaitan, L.K. Emelyanova, L.M. Novikovaa, and M.P. Kirpichnikov, Nanotechnol. Russ. 8, 269 (2013).

    Google Scholar 

  40. J.P. Xiao, Y. Xie, R. Tang, and W. Luo, J. Mater. Chem. 12, 1148 (2002).

    CAS  Google Scholar 

  41. J.H. Bang and K.S. Suslick, Adv. Mater. 22, 1039 (2010).

    CAS  Google Scholar 

  42. M.I. Díez-García, V. Manzi-Orezzoli, M. Jankulovska, S. Anandan, P. Bonete, R. Gómez, and T. Lana-Villarreal, Phys. Procedia 63, 85 (2015).

    Google Scholar 

  43. A. Buyukbasş Uluşan, S. Altındal Yerişkin, A. Tataroğlu, M. Balbaşi, and Y. Azizian, J. Mater. Sci.: Mater. Electron. 29, 8234 (2018).

    Google Scholar 

  44. N. Baraz, I. Yücedağ, Y. Azizian-Kalandaragh, and Ş. Altındal, J. Mater. Sci.: Mater. Electron. 29, 12735 (2018).

    CAS  Google Scholar 

  45. E.E. Tanrıkulu, Ş. Altındal, and Y. Azizian-Kalandaragh, J. Mater. Sci.: Mater. Electron. 29, 11801 (2018).

    Google Scholar 

  46. Ç. Bilkan, Y. Badali, S. Fotouhi-Shablou, Y. Azizian-Kalandaragh, and Ş. Altındal, Appl. Phys. A 123, 560 (2017).

    Google Scholar 

  47. H.P. Klug and L.E. Alexander, X-ray Diffraction Procedures, 2nd ed. (NewYork: Wiley, 1964).

    Google Scholar 

  48. E.A. Akhlaghi, Y. Badali, S. Altindal, and Y. Azizian-Kalandaragh, Physica B-Condens. Matter. 546, 93 (2018).

    CAS  Google Scholar 

  49. S.M. Sze, Physics of Semiconductor Devices, 3rd ed. (New York: Wiley, 1981).

    Google Scholar 

  50. E.H. Rhoderick, Metal-Semiconductor Contacts (London: Oxford University, 1978).

    Google Scholar 

  51. H.C. Card and E.H. Rhoderick, J. Phys. D Appl. Phys. 4, 1589 (1971).

    CAS  Google Scholar 

  52. H.J. Norde, J. Appl. Phys. 50, 5052 (1979).

    CAS  Google Scholar 

  53. S. Altındal Yerişkin, M. Balbaşı, and İ. Orak, J. Mater. Sci.: Mater. Electron. 28, 14040 (2017).

    Google Scholar 

  54. Y. Badali, A. Nikravan, S. Altindal, and I. Uslu, J. Electron. Mater. 47, 3510 (2018).

    CAS  Google Scholar 

  55. V.R. Reddy, Thin Solid Film. 556, 300 (2014).

    CAS  Google Scholar 

  56. S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    CAS  Google Scholar 

  57. E.H. Nicollian, Mos (Metal Oxide Semiconductor) Physics and Technology (Hoboken: Wiley, 2002).

    Google Scholar 

  58. K.E. Bohlin, J. Appl. Phys. 60, 1223 (1986).

    Google Scholar 

  59. Ş. Altındal and H. Uslu, J. Appl. Phys. 109, 074503 (2011).

    Google Scholar 

  60. E.E. Tanrıkulu, S. Demirezen, Ş. Altındal, and İ. Uslu, J. Mater. Sci.: Mater. Electron. 29, 2890 (2018).

    Google Scholar 

  61. V.R. Reddy, V. Manjunath, V. Janardhanam, Y. Kil, and C.J. Choi, J. Electron. Mater. 43, 3499 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Azizian-Kalandaragh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badali, Y., Azizian-Kalandaragh, Y., Akhlaghi, E.A. et al. Ultrasound-Assisted Method for Preparation of Ag2S Nanostructures: Fabrication of Au/Ag2S-PVA/n-Si Schottky Barrier Diode and Exploring Their Electrical Properties. J. Electron. Mater. 49, 444–453 (2020). https://doi.org/10.1007/s11664-019-07708-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07708-3

Keywords

Navigation