Skip to main content
Log in

Au–Ag binary alloys on n-GaAs substrates and effect of work functions on Schottky barrier height

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, I investigated the effect of work function (ϕm) of AuxAg1−x (x = 0, 0.22, 0.37, 0.71 and 1) on the Au–Ag/n-GaAs Schottky diode (SD) parameters. Ag, Au metals and three alloys with different compositions deposited on n-GaAs substrates by the thermal evaporation method. Surface morphologies of the samples were investigated by an atomic force microscope (AFM). Elemental compositions of Schottky contact metals were conducted by energy dispersive X-ray spectroscopy (EDX). Current–voltage (I–V) and capacitance–voltage (C–V) measurements were performed at room temperature. SD parameters such as barrier height (Φb0), ideality factor (n), series resistance (Rs), and interface state density (Dit) of the SD’s were calculated from the obtained I–V and C–V data. Experimental results showed that all calculated SD parameters depend on the alloy composition. The lowest mean barrier height value was found as 0.789 ± 0.022 eV for Au/n-GaAs SDs and the highest value was determined 0.847 ± 0.008 eV for Au0.71Ag0.29/n-GaAs SDs from I–V measurements. Weak dependencies of barrier height to ϕm existed and gap state parameter (S) determined as 0.0526. The S value was close to the Bardeen limit (S = 0) and indicates that the Fermi level was strongly pinned in Au–Ag/n-GaAs SDs. Also, main SD parameters like series resistance (Rs), ideality factor (n), reverse bias barrier height (ΦbRB), doping density (Nd) and density of interface states (Dit) were calculated via using different methods from I–V and C–V measurement results. Also, to determine the leakage current mechanism Poole–Frenkel emission (PFE) and Schottky emission (SE) models applied on reverse bias I–V data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Bardeen, Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 71, 717 (1947)

    Article  Google Scholar 

  2. A. Cowley, S. Sze, Surface states and barrier height of metal-semiconductor systems. J. Appl. Phys. 36, 3212–3220 (1965)

    Article  CAS  Google Scholar 

  3. W. Schottky, On the semiconductor theory of blocking and point contact rectifiers (in German). Z. Angew. Phys. 113, 367–414 (1939)

    CAS  Google Scholar 

  4. W. Spitzer, C. Mead, Barrier height studies on metal-semiconductor systems. J. Appl. Phys. 34, 3061–3069 (1963)

    Article  Google Scholar 

  5. W. Schottky, Semiconductor theory of the blocking layer (in German). Naturwissenschaften 26, 843 (1938)

    Article  CAS  Google Scholar 

  6. N. Mott, Note on the contact between a metal and an insulator or semiconductor, in: Proceedings of the Cambridge Philosophical Society, (Cambridge Univ Press, 1938), pp. 568–572

  7. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts (Clarendon Press, Oxford, 1988)

    Google Scholar 

  8. R.T. Tung, The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 1, 011304 (2014)

    Article  CAS  Google Scholar 

  9. G. Myburg, F.D. Auret, W.E. Meyer, C.W. Louw, M.J. van Staden, Summary of Schottky barrier height data on epitaxially grown n- and p-GaAs. Thin Solid Films 325, 181–186 (1998)

    Article  CAS  Google Scholar 

  10. S.G. Louie, J.R. Chelikowsky, M.L. Cohen, Ionicity and the theory of Schottky barriers. Phys. Rev. B 15, 2154–2162 (1977)

    Article  CAS  Google Scholar 

  11. R.T. Tung, Formation of an electric dipole at metal-semiconductor interfaces. Phys. Rev. B 64, 205310 (2001)

    Article  CAS  Google Scholar 

  12. S.M. Sze, K.K. Ng, Metal-Semiconductor Contacts (John Wiley & Sons Inc, New Jersey, 2006), p. 832

    Google Scholar 

  13. E. Bucher, S. Schulz, M.C. Lux-Steiner, P. Munz, U. Gubler, F. Greuter, Work function and barrier heights of transition metal silicides. Appl. Phys. A 40, 71–77 (1986)

    Article  Google Scholar 

  14. J. Hu, K.C. Saraswat, H.S.P. Wong, Metal/III-V Schottky barrier height tuning for the design of nonalloyed III-V field-effect transistor source/drain contacts. J. Appl. Phys. 107, 063712 (2010)

    Article  CAS  Google Scholar 

  15. N. Newman, M. Vanschilfgaarde, T. Kendelwicz, M.D. Williams, W.E. Spicer, Electrical study of Schottky barriers on atomically clean GaAs(110) surfaces. Phys. Rev. B 33, 1146–1159 (1986)

    Article  CAS  Google Scholar 

  16. M.C. Özdemir, Ö. Sevgili, I. Orak, A. Türüt, Determining the potential barrier presented by the interfacial layer from the temperature induced I-V characteristics in Al/p-Si Structure with native oxide layer. Mater. Sci. Semicond. Proc. 125, 105629 (2021)

    Article  CAS  Google Scholar 

  17. K. Maeda, H. Ikoma, K. Sato, T. Ishida, Current-voltage characteristics and interface state density of GaAs Schottky-barrier. Appl. Phys. Lett. 62, 2560–2562 (1993)

    Article  CAS  Google Scholar 

  18. A. Türüt, On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. Turk. J. Phys. 44, 302–347 (2020)

    Article  CAS  Google Scholar 

  19. H. Hasegawa, H. Ohno, Unified disorder induced gap state model for insulator–semiconductor and metal–semiconductor interfaces. J. Vac. Sci. Technol. B 4, 1130–1138 (1986)

    Article  CAS  Google Scholar 

  20. D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, Photocatalytic H2O2 production from ethanol/O2 system using TiO2 loaded with Au–Ag bimetallic alloy nanoparticles. ACS Catal. 2, 599–603 (2012)

    Article  CAS  Google Scholar 

  21. S. Küp, A. Taşer, İ Kanmaz, B. Güzeldir, M. Sağlam, Effects of Au-Ag and Au-Cu alloy ratios on the temperature dependent current-voltage characteristics of Au-Ag/n-GaAs/In and Au-Cu/n-GaAs/In Schottky diodes. Mater. Today Proc. 18, 1936–1945 (2019)

    Article  CAS  Google Scholar 

  22. J.R. Waldrop, Electrical-properties of ideal metal contacts to GaAs - Schottky-barrier height. J. Vac. Sci. Technol. B 2, 445–448 (1984)

    Article  CAS  Google Scholar 

  23. Ö. Güllü, M. Biber, S. Duman, A. Türüt, Electrical characteristics of the hydrogen pre-annealed Au/n-GaAs Schottky barrier diodes as a function of temperature. Appl. Surf. Sci. 253, 7246–7253 (2007)

    Article  CAS  Google Scholar 

  24. F. Yiğiterol, H.H. Güllü, Ö. Bayraklı, D.E. Yıldız, Temperature-dependent electrical characteristics of Au/Si3N4/4H n-SiC MIS diode. J. Electron. Mater. 47, 2979–2987 (2018)

    Article  CAS  Google Scholar 

  25. D.E. Yıldız, Electrical properties of Au–Cu/ZnO/p-Si diode fabricated by atomic layer deposition. J. Mater. Sci. 29, 17802–17808 (2018)

    Google Scholar 

  26. G.K. Reeves, H.B. Harrison, Obtaining the specific contact resistance from transmission-line model measurements. Electron Device Lett. 3, 111–113 (1982)

    Article  Google Scholar 

  27. A. Akkaya, E. Ayyıldız, Automation software for semiconductor research laboratories: electrical parameter calculation program (SeCLaS-PC). J. Circuits Syst. Comput. 29, 2050215 (2020)

    Article  Google Scholar 

  28. A. Akkaya, E. Ayyıldız, Automation software for semiconductor research laboratories: Measurement System and Instrument Control Program (SeCLaS-IC). MAPAN 35, 343–350 (2020)

    Article  Google Scholar 

  29. S. Fain Jr., J. McDavid, Work-function variation with alloy composition: Ag-Au. Phys. Rev. B 9, 5099 (1974)

    Article  CAS  Google Scholar 

  30. R. Ishii, K. Matsumura, A. Sakai, T. Sakata, Work function of binary alloys. Appl. Surf. Sci. 169–170, 658–661 (2001)

    Article  Google Scholar 

  31. C. Kittel, Introduction to Solid State Physics (Wiley, Hoboken, 1996)

    Google Scholar 

  32. H.I. Chen, C.K. Hsiung, Y.I. Chou, Characterization of Pd-GaAs Schottky diodes prepared by the electroless plating technique. Semicond. Sci. Technol. 18, 620–626 (2003)

    Article  CAS  Google Scholar 

  33. A. Türüt, D.E. Yıldız, A. Karabulut, İ Orak, Electrical characteristics of atomic layer deposited Au/Ti/HfO2/n-GaAs MIS diodes in the wide temperature range. J. Mater. Sci. 31, 7839–7849 (2020)

    Google Scholar 

  34. A. Akkaya, L. Esmer, B.B. Kantar, H. Çetin, E. Ayyıldız, Effect of thermal annealing on electrical and structural properties of Ni/Au/n-GaN Schottky contacts. Microelectron. Eng. 130, 62–68 (2014)

    Article  CAS  Google Scholar 

  35. J. Ahopelto, V.M. Airaksinen, E. Siren, H.M. Niemi, Fabrication of sub-100 nm GaAs columns by reactive ion etching using Au islands as etching mask. J. Vac. Sci. Technol. B 13, 161–162 (1995)

    Article  CAS  Google Scholar 

  36. V.G. Weizer, N.S. Fatemi, The interaction of gold with gallium arsenide. J. Appl. Phys. 64, 4618–4623 (1988)

    Article  CAS  Google Scholar 

  37. C. Messmer, J.C. Bilello, The surface energy of Si, GaAs, and GaP. J. Appl. Phys. 52, 4623–4629 (1981)

    Article  CAS  Google Scholar 

  38. S. Sze, Physics of Semiconductor Devices (John Wiley & Sons, New York, 1981)

    Google Scholar 

  39. L. Huang, R. Geiod, D. Wang, Barrier inhomogeneities and interface states of metal/4H-SiC Schottky contacts. Jpn. J. Appl. Phys. 55, 124101 (2016)

    Article  CAS  Google Scholar 

  40. A.K. Sinha, J.M. Poate, Effect of alloying behavior on the electrical characteristics of n-GaAs Schottky diodes metallized with W, Au, and Pt. Appl. Phys. Lett. 23, 666–668 (1973)

    Article  CAS  Google Scholar 

  41. D. Eastman, Photoelectric work functions of transition, rare-earth, and noble metals. Phys. Rev. B 2, 1 (1970)

    Article  Google Scholar 

  42. M. Soylu, F. Yakuphanoğlu, Analysis of barrier height inhomogeneity in Au/n-GaAs Schottky barrier diodes by Tung model. J. Alloys Compd. 506, 418–422 (2010)

    Article  CAS  Google Scholar 

  43. H. Altuntaş, S. Altındal, S. Özçelik, H. Shtrikman, Electrical characteristics of Au/n-GaAs Schottky barrier diodes with and without SiO2 insulator layer at room temperature. Vacuum 83, 1060–1065 (2009)

    Article  CAS  Google Scholar 

  44. S. Tunhuma, F. Auret, M. Legodi, M. Diale, The effect of high temperatures on the electrical characteristics of Au/n-GaAs Schottky diodes. Phys. B 480, 201–205 (2016)

    Article  CAS  Google Scholar 

  45. A.F. Özdemir, A. Türüt, A. Kökce, The double Gaussian distribution of barrier heights in Au/n-GaAs Schottky diodes from I-V-T characteristics. Semicond. Sci. Technol. 21, 298–302 (2006)

    Article  CAS  Google Scholar 

  46. D. Korucu, A. Türüt, H. Efeoğlu, Temperature dependent I-V characteristics of an Au/n-GaAs Schottky diode analyzed using Tung’s model. Phys. B 414, 35–41 (2013)

    Article  CAS  Google Scholar 

  47. S. Arulkumaran, J. Arokiaraj, M. Udhayasankar, P. Santhanaraghavan, J. Kumar, P. Ramasamy, Investigations on Au, Ag, and Al Schottky diodes on liquid encapsulated Czochralski-Grown N-GaAs[100]. J. Electron. Mater. 24, 813–817 (1995)

    Article  CAS  Google Scholar 

  48. J.R. Waldrop, Influence of S and Se on the Schottky-barrier height and interface chemistry of Au contacts to GaAs. J. Vac. Sci. Technol. B 3, 1197–1201 (1985)

    Article  CAS  Google Scholar 

  49. O. Kahveci, A. Akkaya, E. Ayyıldız, A. Türüt, Comparison of yhe Ti/N-GaAs Schottky contacts’ parameters fabricated using DC magnetron sputtering and thermal evaporation. Surf. Rev. Lett. 24, 1750047 (2016)

    Article  CAS  Google Scholar 

  50. S.W. Pang, G.A. Lincoln, R.W. McClelland, P.D. DeGraff, M.W. Geis, W.J. Piacentini, Effects of dry etching on GaAs. J. Vac. Sci. Technol. B 1, 1334–1337 (1983)

    Article  CAS  Google Scholar 

  51. S. Guha, B.M. Arora, V.P. Salvi, High temperature annealing behaviour of Schottky barriers on GaAs with gold and gold-gallium contacts. Solid State Electron. 20, 431–432 (1977)

    Article  CAS  Google Scholar 

  52. A.H. Kacha, M. Anani, B. Akkal, Z. Benamara, G. Monier, H. Mehdi, C. Varenne, A. Ndiaye, C. Robert-Goumet, Effect of metallic contacts diffusion on Au/GaAs and Au/GaN/GaAs SBDs electrical quality during their fabrication process. J. Alloys Compd. 876, 159596 (2021)

    Article  CAS  Google Scholar 

  53. T. Nishimura, K. Kita, A. Toriumi, A significant shift of Schottky barrier heights at strongly pinned metal/germanium interface by inserting an ultra-thin insulating film. Appl. Phys. Express 1, 051406 (2008)

    Article  CAS  Google Scholar 

  54. M.L. Cohen, Schottky and Bardeen limits for Schottky barriers. J. Vac. Sci. Technol. 16, 1135–1136 (1979)

    Article  CAS  Google Scholar 

  55. R.T. Tung, Chemical bonding and Fermi level pinning at metal-semiconductor interfaces. Phys. Rev. Lett. 84, 6078–6081 (2000)

    Article  CAS  Google Scholar 

  56. M. Ambrico, M. Losurdo, P. Capezzuto, G. Bruno, T. Ligonzo, L. Schiavulli, I. Farella, V. Augelli, A study of remote plasma nitrided nGaAs/Au Schottky barrier. Solid State Electron. 49, 413–419 (2005)

    Article  CAS  Google Scholar 

  57. S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85–87 (1986)

    Article  CAS  Google Scholar 

  58. H. Norde, A modified forward I-V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50, 5052–5053 (1979)

    Article  CAS  Google Scholar 

  59. M. Sağlam, E. Ayyıldız, A. Gümüs, A. Türüt, H. Efeoğlu, S. Tüzemen, Series resistance calculation for the metal-insulator-semiconductor Schottky barrier diodes. Appl. Phys. A-Mater. 62, 269–273 (1996)

    Article  Google Scholar 

  60. Ş Karataş, Temperature and voltage dependence C-V and G/ω–V characteristics in Au/n-type GaAs metal–semiconductor structures and the source of negative capacitance. J. Mater. Sci. 32, 707–716 (2021)

    Google Scholar 

  61. O. Çiçek, H. Durmuş, Ş Altındal, Identifying of series resistance and interface states on rhenium/n-GaAs structures using C-V–T and G/ω–V–T characteristics in frequency ranged 50 kHz to 5 MHz. J. Mater. Sci. 31, 704–713 (2020)

    Google Scholar 

  62. K.E. Bohlin, Generalized Norde plot including determination of the ideality factor. J. Appl. Phys. 60, 1223–1224 (1986)

    Article  Google Scholar 

  63. O. Güllü, S. Aydoğan, A. Türüt, Fabrication and electrical properties of Al/Safranin T/n-Si/AuSb structure. Semicond. Sci. Technol. 23, 075005 (2008)

    Article  CAS  Google Scholar 

  64. S. Leung, T. Yoshiie, C.L. Bauer, A.G. Milnes, Electrical properties, structure, and phase morphology of Au-Ga alloy films codeposited on GaAs substrates. J. Electrochem. Soc. 132, 898–903 (1985)

    Article  CAS  Google Scholar 

  65. S. Demirezen, E. Özavci, S. Altındal, The effect of frequency and temperature on capacitance/conductance-voltage (C/G-V) characteristics of Au/n-GaAs Schottky barrier diodes (SBDs). Mater. Sci. Semicond. Process. 23, 1–6 (2014)

    Article  CAS  Google Scholar 

  66. V.R. Reddy, Electrical properties of Au/polyvinylidene fluoride/n-InP Schottky diode with polymer interlayer. Thin Solid Films 556, 300–306 (2014)

    Article  CAS  Google Scholar 

  67. D.E. Yıldız, M. Karakuş, L. Toppare, A. Cirpan, Leakage current by Frenkel-Poole emission on benzotriazole and benzothiadiazole based organic devices. Mater. Sci. Semicond. Process. 28, 84–88 (2014)

    Article  CAS  Google Scholar 

  68. J.H. Werner, H.H. Güttler, Barrier inhomogeneities at Schottky contacts. J. Appl. Phys. 69, 1522–1533 (1991)

    Article  CAS  Google Scholar 

  69. J.H. Werner, H.H. Güttler, Transport properties of inhomogeneous Schottky contacts. Phys. Scripta 1991, 258 (2007)

    Google Scholar 

  70. R.T. Tung, Recent advances in Schottky barrier concepts. Mater. Sci. Eng. R 35, 1–138 (2001)

    Article  Google Scholar 

  71. W.A. Hill, C.C. Coleman, A single-frequency approximation for interface-state density determination. Solid State Electron. 23, 987–993 (1980)

    Article  CAS  Google Scholar 

  72. E.H. Nicollian, J.R. Brews, Mos (Metal Oxide Semiconductor) Physics And Technology (Wiley-Interscience, New York, 1982)

    Google Scholar 

  73. D. Korucu, S. Altındal, T.S. Mammadov, S. Özçelik, The frequency dependent electrical characteristics of Sn/p-InP Schottky barrier diodes (SBDs). Optoelectron. Adv. Mater. 2, 525–529 (2008)

    CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Akkaya.

Ethics declarations

Conflict of interest

All the authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkaya, A. Au–Ag binary alloys on n-GaAs substrates and effect of work functions on Schottky barrier height. J Mater Sci: Mater Electron 32, 17448–17461 (2021). https://doi.org/10.1007/s10854-021-06276-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06276-9

Navigation