Skip to main content
Log in

Thermal Preconditioning and Restoration of Bismuth-Containing, Lead-Free Solder Alloys

  • TMS2019 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Bismuth (Bi)-containing solder alloys have emerged as prime candidates to replace traditional lead (Pb)-free alloys such as SAC 305 (Sn-3.0Ag-0.5Cu, in wt.%); unlike SAC alloys, these alloys show stability in mechanical properties after aging. A process was developed in which a Bi-bearing alloy is intentionally subjected to a short above-solvus thermal treatment, to potentially extend the life of the solder joint and improve device reliability. This treatment may be implemented after reflow, or periodically in service as a form of preventive maintenance. In this work, we evaluated this treatment as both a preconditioning and restoration process to compare Violet (Sn-2.25Ag-0.5Cu-6.0Bi, in wt.%) and SAC 305 alloys. Firstly, the solvus temperature of Violet was evaluated experimentally; this result was used to determine an appropriate heat treatment temperature for preconditioning and restoration. It was found that the heat treatment produces a highly equiaxed β-Sn grain structure, likely caused by particle stimulated nucleation during Bi precipitation. The creep resistance of the alloy was found to improve after the treatment. Finally, it was observed that both Bi and preconditioning can have varying effects on the thermal cycling reliability of the alloy, depending on the harshness of the thermal cycle (ΔT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ma, J. Suhling, Y. Zhang, P. Lall, and M.J. Bozack, in Electronic Components and Technology Conference Proceedings (2007), pp. 653–658

  2. M. Hasnine, M. Mustafa, J.C. Suhling, B.C. Prorok, M.J. Bozack, and P. Lall, in 2013 Electronic Components and Technology Conference Proceedings (2013), pp. 168–178

  3. R. Coyle, J. Smetana, D. Hillman, C. Johnson, R. Parker, B. Sandy-Smith, H. Zhang, J. Geng, M. Osterman, B. Arfaei, A. Delhaise, K. Howell, J. Bath, S. Longgood, A. Kleyner, J. Silk, R. Pandher, E. Lundeen, and J. Noiray, in SMTA International Conference Proceedings (2018)

  4. P.T. Vianco and J.A. Rejent, J. Electron. Mater. 28, 10 (1999).

    Google Scholar 

  5. Z. Moser, W. Gasior, K. Bukat, J. Pstrus, R. Kisiel, J. Sitek, K. Ishida, and I. Ohnuma, J. Phase Equilib. Diffus. 27, 2 (2006).

    Article  Google Scholar 

  6. D. Witkin, in APEX Expo Proceedings (2013), pp. 540–560

  7. J. Juarez, P. Snugovsky, E. Kosiba, Z. Bagheri, S. Subramaniam, M. Robinson, J. Heebink, J. Kennedy, and M. Romansky, J. Microelectron. Electron. Packag. 12, 1 (2015).

    Article  Google Scholar 

  8. N. Jadhav, M. Williams, F. Pei, G. Stafford, and E. Chason, J. Electron. Mater. 42, 2 (2013).

    Article  Google Scholar 

  9. D. Witkin, J. Electron. Mater. 41, 2 (2012).

    Article  Google Scholar 

  10. A. Delhaise, L. Snugovsky, D. Perovic, P. Snugovsky, and E. Kosiba, J. Surf. Mt. Technol. 27, 3 (2014).

    Google Scholar 

  11. A. Delhaise, D. Perovic, and P. Snugovsky, J. Surf. Mt. Technol. 30, 2 (2017).

    Google Scholar 

  12. T.-K. Lee, T. Bieler, C.-U. Kim, and H. Ma, Fundamentals of Lead-Free Interconnect Technology, 1st ed. (New York: Springer, 2015), p. 81.

    Google Scholar 

  13. A. Delhaise, Z. Chen, and D. Perovic, J. Electron. Mater. 47, 3 (2018).

    Article  Google Scholar 

  14. A. Delhaise, Z. Chen, and D. Perovic, JOM 71, 1 (2019).

    Article  Google Scholar 

  15. E. Arzt, Acta Mater. 46, 16 (1998).

    Google Scholar 

  16. B.-J. Lee, C.-S. Oh, and J.-H. Shim, J. Electron. Mater. 25, 6 (1996).

    Google Scholar 

  17. T.-K. Lee, T. Bieler, C.-U. Kim, and H. Ma, Fundamentals of Lead-Free Interconnect Technology, 1st ed. (New York: Springer, 2015), p. 93.

    Google Scholar 

  18. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Oxford: Elsevier, 2004), pp. 293–303.

    Google Scholar 

  19. J. Dean, A. Bradbury, G. Aldrich-Smith, and T.W. Clyne, Mech. Mater. 65, 1 (2013). https://doi.org/10.1016/j.mechmat.2013.05.014.

    Article  Google Scholar 

  20. P. Vianco, J. Rejent, M. Grazier, and A. Kilgo, Materials 5, 11 (2012).

    Article  Google Scholar 

  21. M.E. Kassner, Fundamentals of Creep in Metals and Alloys, 3rd ed. (Waltham: Butterworth-Heinemann, 2015), p. 91.

    Google Scholar 

  22. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Mater. Sci. Eng. A 238, 2 (1997).

    Article  Google Scholar 

  23. R.B. Abernathy, The New Weibull Handbook, 2nd ed. (North Palm Beach: Robert B. Abernathy, 1996), p. 31.

    Google Scholar 

  24. L. Yin, L. Wentlent, L. Yang, B. Arfaei, A. Oasaimeh, and P. Borgesen, J. Electron. Mater. 41, 2 (2012).

    Article  Google Scholar 

  25. P. Boregsen, L. Wentlent, S. Hamasha, S. Khasawneh, S. Shirazi, D. Schmitz, T. Alghoul, C. Greene, and L. Yin, J. Electron. Mater. 47, 5 (2018).

    Google Scholar 

  26. J. Hokka, T. Mattila, H. Xu, and M. Paulasto-Kröckel, J. Electron. Mater. 42, 6 (2013).

    Google Scholar 

  27. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Oxford: Elsevier, 2004), p. 18.

    Google Scholar 

  28. T.T. Mattila and J.K. Kivilahti, Recrystallization, ed. K. Sztwiertnia (London: IntechOpen, 2012), p. 189.

    Google Scholar 

  29. Q. Shao, L. Liu, T. Fan, D. Yuan, and J. Chen, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.07.332.

    Article  Google Scholar 

  30. M. Bhatia, I. Adlakha, G. Lu, and K. Solanki, Scr. Mater. (2016). https://doi.org/10.1016/j.scriptamat.2016.05.038.

    Article  Google Scholar 

  31. P. Banh, A. Delhaise, and D. Perovic, J. Surf. Mt. Technol. 32, 2 (2019).

    Google Scholar 

  32. S. Belyakov, J. Xian, G. Zeng, K. Sweatman, T. Nishimura, T. Akaiwa, and C. Gourlay, J. Mater. Sci. Electron. 30, 1 (2019).

    Article  Google Scholar 

  33. A. Delhaise, P. Snugovsky, I. Matijevic, J. Kennedy, M. Romansky, D. Hillman, D. Adams, S. Meschter, J. Juarez, M. Kammer, I. Straznicky, L. Snugovsky, and D. Perovic, J. Surf. Mt. Technol. 31, 1 (2018).

    Google Scholar 

  34. A. Delhaise, D. Hillman, P. Snugovsky, J. Kennedy, R. Wilcoxon, D. Adams, S. Meschter, J. Juarez, M. Kammer, I. Straznicky, and D. Perovic, J. Surf. Mt. Technol. 32, 1 (2019).

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Matthew Daly and Prof. Chandra Veer Singh for assistance with nanoindentation, as well as co-op students at Collins Aerospace for failure analysis of the ATC samples. Financial assistance from the Department of Materials Science and Engineering and the Refined Manufacturing Acceleration Process (ReMAP) are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André M. Delhaise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delhaise, A.M., Snugovsky, P., Kennedy, J. et al. Thermal Preconditioning and Restoration of Bismuth-Containing, Lead-Free Solder Alloys. J. Electron. Mater. 49, 116–127 (2020). https://doi.org/10.1007/s11664-019-07666-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07666-w

Keywords

Navigation