Skip to main content
Log in

Orientation Relationships of Pure Tin on Single Crystal Germanium Substrates

  • TMS2019 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The limited number of independent β-Sn grain orientations resulting from the difficulty in nucleating β-Sn during solidification of Sn-based solders has a large effect on the resulting β-Sn grain size and, hence, on overall solder joint performance and reliability. This study analyzes the efficacy of Ge as a heterogeneous nucleation agent for β-Sn by observing the morphologies and orientation relationships of as-deposited, solid-state annealed, and liquid-state annealed pure Sn films on single crystal Ge (100), (110), and (111) substrates. Results from scanning electron microscopy and electron backscatter diffraction showed that the as-deposited Sn films all deposited with a Sn (001)|| z-axis texture, regardless of the underlying Ge substrate orientation. Solid-state annealing at 150 °C for 5 min did not result in significant dewetting of the Sn films, and the films maintained their as-deposited texture of Sn (001)|| z-axis, regardless of the underlying Ge substrate orientation. Liquid-state annealing at 235 °C for 1 min resulted is large-scale dewetting of the Sn films and re-orientation of the Sn films on the various Ge substrates. After solidification, the Ge (100) and (110) single crystal substrates produced patches of dewetted grains of the same orientation but there were no consistent Sn grain textures after liquid-state annealing, suggesting no single orientation relationship. In contrast, solidification on Ge (111) single crystal substrates resulted in isolated grains with a single Sn film texture and an orientation relationship of \( \left( {100} \right)_{\rm{Sn}} \parallel \left( {111} \right)_{\rm{Ge}} {\hbox{and}} \left[ {100} \right]_{\rm{Sn}} \parallel \left[ {110} \right]_{\rm{Ge}} \). Density Functional Theory simulations of the experimentally observed Ge (111) sample orientation relationship and the Ge/Sn cube-on-cube orientation relationship suggest favorable relative interfacial binding energies for both interface orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, E.J. Cotts, and B. Nandagopal, I.E.E.E. Trans. Compon. Packag. Technol. 31, 370 (2008).

    Article  CAS  Google Scholar 

  2. D. Swenson, J. Electron. Mater. 18, 39 (2007).

    CAS  Google Scholar 

  3. Y.-C. Huang, S.-W. Chen, and K.-S. Wu, J. Electron. Mater. 39, 109 (2010).

    Article  CAS  Google Scholar 

  4. B. Vonnegut, J. Colloid Sci. 3, 563 (1948).

    Article  CAS  Google Scholar 

  5. G.M. Pound and V.K. La Mer, J. Am. Chem. Soc. 74, 2323 (1952).

    Article  CAS  Google Scholar 

  6. D. Turnbull and R.E. Cech, J. Appl. Phys. 21, 804 (1950).

    Article  Google Scholar 

  7. D. Turnbull, J. Chem. Phys. 18, 769 (1950).

    Article  CAS  Google Scholar 

  8. D. Turnbull, J. Chem. Phys. 18, 769 (1950).

    Article  CAS  Google Scholar 

  9. J.H. Perepezko, Mater. Sci. Eng. 65, 125 (1984).

    Article  CAS  Google Scholar 

  10. J.H. Perepezko, Mater. Sci. Eng., A 226–228, 374 (1997).

    Article  Google Scholar 

  11. J.H. Perepezko and G. Wilde, Curr. Opin. Solid State Mater. Sci. 20, 3 (2016).

    Article  CAS  Google Scholar 

  12. L.P. Lehman, Y. Xing, T.R. Bieler, and E.J. Cotts, Acta Mater. 58, 3546 (2010).

    Article  CAS  Google Scholar 

  13. K.V. Reeve and C.A. Handwerker, J. Electron. Mater. 47, 61 (2018).

    Article  CAS  Google Scholar 

  14. T.-K. Lee, T.R. Bieler, C.-U. Kim, and H. Ma, Fundamentals of Lead-Free Solder Interconnect Technology (Boston: Springer, 2015).

    Book  Google Scholar 

  15. M.A. Easton, M. Qian, A. Prasad, and D.H. StJohn, Curr. Opin. Solid State Mater. Sci. 20, 13 (2015).

    Article  CAS  Google Scholar 

  16. K.N. Reeve, J.R. Holaday, S.M. Choquette, I.E. Anderson, and C.E. Handwerker, J. Phase Equilibria Diffus 37, 369 (2016).

    Article  CAS  Google Scholar 

  17. H. Shang, Z.L. Ma, S.A. Belyakov, and C.M. Gourlay, J. Alloys Compd. 715, 471 (2017).

    Article  CAS  Google Scholar 

  18. D.H. StJohn, A. Prasad, M.A. Easton, and M. Qian, Metall. Mater. Trans. A 46, 4868 (2015).

    Article  CAS  Google Scholar 

  19. Z.A. Ma, S.A. Belyakov, T. Nishimura, T. Nishimura, and C.M. Gourlay, Nat. Commun. 8, 1 (2017).

    Google Scholar 

  20. Z.L. Ma, S.A. Belyakov, and C.M. Gourlay, J. Alloys Compd. 682, 326 (2016).

    Article  CAS  Google Scholar 

  21. S.A. Belyakov and C.M. Gourlay, Acta Mater. 71, 56 (2014).

    Article  CAS  Google Scholar 

  22. R.W. Olesinski and G.J. Abbaschian, Bull. Alloy Phase Diagr. 5, 265 (1984).

    Article  CAS  Google Scholar 

  23. R.W. Olesinski and G.J. Abbaschian, Bull. Alloy Phase Diagr. 7, 535 (1986).

    Article  CAS  Google Scholar 

  24. R.W. Olesinski and G.J. Abbaschian, Bull. Alloy Phase Diagr. 6, 540 (1985).

    Article  CAS  Google Scholar 

  25. P. Wynblatt and D. Chatain, J. Mater. Sci. 50, 5262 (2015).

    Article  CAS  Google Scholar 

  26. D. Chatain, P. Wynblatt, A.D. Rollett, and G.S. Rohrer, J. Mater. Sci. 50, 5276 (2015).

    Article  CAS  Google Scholar 

  27. T. Deegan and G. Hughes, Appl. Surf. Sci. 123–124, 66 (1998).

    Article  Google Scholar 

  28. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  29. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 1 (2010).

    Article  Google Scholar 

  30. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  31. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  32. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  33. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  34. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  35. S. Curiotto, H. Chien, H. Meltzman, P. Wynblatt, G.S. Rohrer, W.D. Kaplan, and D. Chatain, Acta Mater. 59, 5320 (2011).

    Article  CAS  Google Scholar 

  36. D. Brandon, Acta Metall. 14, 1479 (1966).

    Article  CAS  Google Scholar 

  37. Y.V. Naidich, N.F. Grigorenko, and V.M. Perevertailo, J. Cryst. Growth 53, 261 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for Dan Josell and Maureen Williams at NIST for their assistance in performing the Sn film depositions, to Qingfeng Xing, Matt Lynn, Matt Besser, Mark Clarridge, Sarah Wiley, Emma White, Stephanie Choquette, and Iver Anderson of Ames Laboratory for their help in providing access and training on the EBSD system located at the Sensitive Instrument Facility in Ames, IA, USA, and to David Guzman, formerly at Purdue University and currently at Brookhaven National Laboratory, for his assistance in running the DFT simulations. This work was prepared by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344. Ames Laboratory (US-DOE), Purdue University, and Nihon Superior supported this work through Ames Lab Contract No. DE-AC02-07CH11358. Additional funding was provided through government support under and awarded by the DoD Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Handwerker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reeve, T.C., Reeve, S.T. & Handwerker, C.A. Orientation Relationships of Pure Tin on Single Crystal Germanium Substrates. J. Electron. Mater. 49, 140–151 (2020). https://doi.org/10.1007/s11664-019-07640-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07640-6

Keywords

Navigation