Skip to main content
Log in

Effect of Chemical Additives in the Plating Bath on Surface Corrosion Resistance of Ni(P)

  • TMS2019 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, the effect of the chemical additives (surfactant, stabilizer) on the corrosion resistance of the Ni(P) layer was investigated. The average O content at the depth of 1 nm of the tested Ni(P) specimens was used as the indication of the corrosion degree for the tested Ni(P) specimen. The average O content at the depth of 1 nm of the tested Ni(P) specimens prepared with thiourea is 27.74 at.%, which is larger than the average O content (14.43 at.%) at the depth of 1 nm of the corrosion-tested Ni(P) layer. It can be concluded that the corrosion resistance of the Ni(P) layer would be greatly reduced two times with adding thiourea in the Ni(P) plating bath. The effect of the solder mask was also investigated on the corrosion resistance of the Ni(P) layer. We found that S impurities leaching from the solder mask might be co-deposited into Ni(P), and decrease the corrosion resistance of the Ni(P) layer. Yet, its influence is relatively lower than the effect of thiourea on the corrosion resistance of the Ni(P) layer. With adding CTAB, as a surfactant, in the Ni(P) plating bath, the average P content in the Ni(P) layer increases. The high P content further improves the corrosion resistance of the Ni(P) layer. Moreover, the positive effect of adding CTAB in the plating solution on the corrosion resistance of the Ni(P) layer would suppress the negative effect of the thiourea additive and solder mask in the plating solution. The main innovation finding of the work is that we found that adding CTAB in the Ni(P) plating solution can reduce the co-deposition of S impurities, from thiourea in the Ni(P) plating bath and the solder mask, in the Ni(P) layer. Consequently, the corrosion resistance of the Ni(P) layer can be further improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Brenner and G.E. Riddell, Proc. Am. Eletropl. Soc. 33, 16 (1946).

    Google Scholar 

  2. M. Palaniappa and S.K. Seshadri, Wear 265, 735 (2008).

    Article  CAS  Google Scholar 

  3. M. Yan, H.G. Ying, and T.Y. Ma, Surf. Coat. Technol. 202, 5909 (2008).

    Article  CAS  Google Scholar 

  4. Y.-C. Lin, K.-J. Wang, and J.-G. Duh, J. Electron. Mater. 39, 283 (2010).

    Article  CAS  Google Scholar 

  5. W.H. Zhu, L. Xu, J.H.L. Pang, X.R. Zhang, E. Poh, Y.F. Sun, A.Y.S. Sun, C.K. Wang, H.B. Tan, IEEE 1667 (2008).

  6. R.M. Allen and J.B. Van der Sand, Scripta Metall. Mater. 16, 1161 (1982).

    Article  CAS  Google Scholar 

  7. D. Mukherjee and C. Rajagopal, Met. Finish. 90, 15 (1992).

    CAS  Google Scholar 

  8. J. Wojewoda-Budka, Z. Huber, L. Litynska-Dobrzynska, N. Sobczak, and P. Zieba, Mater. Chem. Phys. 139, 276 (2013).

    Article  CAS  Google Scholar 

  9. G.O. Mallory, J.B. Hajdu, Electroless Plating: Fundamentals and Applications. William Andrew, 1990.

  10. W.J. Cheong, B.L. Luan, and D.W. Shoesmith, Appl. Surf. Sci. 229, 282 (2004).

    Article  CAS  Google Scholar 

  11. K. Zeng, R. Stierman, D. Abbott, and M. Murtuza, IEEE, 1111 (2006).

  12. K.-L. Lin and J.-W. Hwang, Mater. Chem. Phys. 76, 204 (2002).

    Article  CAS  Google Scholar 

  13. I. Baskaran, T.S.N.S. Narayanan, and A. Stephen, Mater. Chem. Phys. 99, 117 (2006).

    Article  CAS  Google Scholar 

  14. B.-H. Chen, L. Hong, Y. Ma, and T.-M. Ko, Ind. Eng. Chem. Res. 41, 2668 (2002).

    Article  CAS  Google Scholar 

  15. R. Elansezhian, B. Ramamoorthy, and P.K. Nair, Surf. Coat. Technol. 203, 709 (2008).

    Article  CAS  Google Scholar 

  16. A. Małecki and A. Micek-Ilnicka, Surf. Coat. Technol. 123, 72 (2000).

    Article  Google Scholar 

  17. Satoru Ando, Takeshi Suzuki, and Kingo Itaya, J. Electroanal. Chem. 412, 139 (1996).

    Article  Google Scholar 

  18. J. Kivel and J.S. Sallo, J. Electrochem. Soc. 112, 1201 (1965).

    Article  CAS  Google Scholar 

  19. L. Das and D.T. Chin, Plat. Surf. Finish. 83, 55 (1996).

    CAS  Google Scholar 

  20. I.V. Petukhov and M.G. Shcherban’, Prot. Met. Phys. Chem. Surf. 35, 566 (1999).

    CAS  Google Scholar 

  21. P. Marcus, Corrosion Mechanisms in Theory and Practice, 3rd ed. (Boca Raton: CRC Press, 2011), pp. 395–417.

    Book  Google Scholar 

  22. B. Elsener, M. Crobu, and M.A. Scorciapino, J. Appl. Electrochem. 38, 1053 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the financial support from Taiwan Uyemura Co., LTD, programs MOST 107-2221-E-008-042-MY3 and MOST 105-2221-E-008-104-MY3. The financial support and information consultancy of ENIG development trends provided by Taiwan Uyemura Co., LTD are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C.Y., Chen, Y.H., Tang, Y.K. et al. Effect of Chemical Additives in the Plating Bath on Surface Corrosion Resistance of Ni(P). J. Electron. Mater. 49, 26–33 (2020). https://doi.org/10.1007/s11664-019-07626-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07626-4

Keywords

Navigation