Skip to main content

Magnetic, Electronic, Mechanic, Anisotropic Elastic and Vibrational Properties of Antiferromagnetic Ru2TGa (T = Cr, Mn, and Co) Heusler Alloys

Abstract

A theoretical study of magnetic, electronic, mechanic, anisotropic elastic, and vibrational properties of \( {\hbox{Ru}}_{2} \)TGa (T = Cr, Mn, and Co) Heusler alloys has been extensively investigated by the first-principles method using the generalized gradient approximation. Structural parameters such as lattice constant (\( a_{0} \)), bulk modulus (B) and first pressure derivative of bulk modulus (B′) were obtained by using the Murnaghan equation. The calculated formation enthalpies (\( \Delta H_{f} \)) showed that these alloys are thermodynamically stable. The total spin magnetic moments per unit cell of \( {\hbox{Ru}}_{2} \)TGa (T = Cr, Mn, and Co) alloys were found to be 1.16 \( \mu_{B} \), 2.16 \( \mu_{B} \) and 0.29 \( \mu_{B} \), respectively. In addition to electronic band structures along the high symmetry directions, corresponding total and partial density of states were also plotted. It was found that the spin-up states have a metallic character for all alloys, but the spin-down states of the other alloys except for \( {\hbox{Ru}}_{2} \)CoGa have a pseudo-gap at the Fermi level. The bulk modulus (B), shear modulus (\( G \)), ratio of B/\( G \), Young’s modulus (E), Poisson’s ratios (ν), Vickers hardness (\( H_{V} \)), sound velocities (\( v_{l} \), \( v_{t} \), and \( v_{m} \)), Debye temperatures (\( \varTheta_{D} \)) and melting temperatures (\( T_{\rm{melt}} \)) were obtained from elastic constants (\( C_{ij} \)) in accordance with the Voigt–Reuss–Hill approximation. The calculated elastic constants showed that these alloys are mechanically stable and they have anisotropic character. The elastic anisotropy of the considered alloys was analyzed and pictured in great detail with 2D and 3D figures of directional dependence of Young’s modulus, linear compressibility, shear modulus, and Poisson’s ratio.These alloys are dynamically stable because there are no negative modes in their phonon dispersion curves.

References

  1. F. Heusler, Verh. Dtsch. Phys. Ges. 5, 219 (1903).

    CAS  Google Scholar 

  2. S. Khmelevskyi, E. Simon, L. Szunyogh, and P. Mohn, J. Alloys Compd. 692, 178 (2017).

    CAS  Article  Google Scholar 

  3. I. Galanakis, P.H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002).

    Article  CAS  Google Scholar 

  4. S.D. Bader and S.S.P. Parkin, Annu. Rev. Condens. Matter Phys. 1, 71 (2010).

    CAS  Article  Google Scholar 

  5. R.A. De Groot, F.M. Mueller, P.G. Van Engen, and K.H.J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).

    Article  Google Scholar 

  6. I. Žutić, J. Fabian, and S.D. Sarma, Rev. Mod. Phys. 76, 323 (2004).

    Article  CAS  Google Scholar 

  7. I. Galanakis, P. Mavropoulos, and P.H. Dederichs, J. Phys. D Appl. Phys. 39, 765 (2006).

    CAS  Article  Google Scholar 

  8. Z. Charifi, H. Baaziz, S. Noui, Ş. Uğur, G. Uğur, A. Iyigör, A. Candan, and Y. Al-Douri, Comput. Mater. Sci. 87, 187 (2014).

    CAS  Article  Google Scholar 

  9. E. ŞaŞıoğlu, L.M. Sandratskii, and P. Bruno, Phys. Rev. B 70, 024427 (2004).

    Article  CAS  Google Scholar 

  10. J. Kübler, G.H. Fecher, and C. Felser, Phys. Rev. B 76, 024414 (2007).

    Article  CAS  Google Scholar 

  11. F. Hajizadeh and F. Ahmadian, J. Supercond. Nov. Magn. 31, 3515 (2018).

    CAS  Article  Google Scholar 

  12. P. Entel, V.D. Buchelnikov, V.V. Khovailo, A.T. Zayak, W.A. Adeagbo, M.E. Gruner, H.C. Herper, and E.F. Wassermann, J. Phys. D Appl. Phys. 39, 865 (2006).

    CAS  Article  Google Scholar 

  13. A. Ayuela, J. Enkovaara, K. Ullakko, and R.M. Nieminen, J. Phys. Condens. Matter 11, 2017 (1999).

    CAS  Article  Google Scholar 

  14. M. Sargolzaei, M. Richter, K. Koepernik, I. Opahle, H. Eschrig, and I. Chaplygin, Phys. Rev. B 74, 224410 (2006).

    Article  CAS  Google Scholar 

  15. C.S. Jiang, W. Peng, C. Liu, X. Deng, J. Yuan, and Y. Wen, J. Magn. Magn. Mater. 471, 82 (2019).

    CAS  Article  Google Scholar 

  16. A. Erkisi, G. Surucu, and R. Ellialtioglu, Philos. Mag. 97, 2237 (2017).

    CAS  Article  Google Scholar 

  17. F. Dahmane, Y. Mogulkoc, B. Doumi, A. Tadjer, R. Khenata, S.B. Omran, D.P. Rai, G. Murtaza, and D. Varshney, J. Magn. Magn. Mater. 407, 167 (2016).

    CAS  Article  Google Scholar 

  18. R. Haleoot and B. Hamad, J. Elect. Mat. 48, 1164 (2019).

    CAS  Article  Google Scholar 

  19. A. Candan, G. Uğur, Z. Charifi, H. Baaziz, and M.R. Ellialtıoğlu, J. Alloys Compd. 560, 215 (2013).

    CAS  Article  Google Scholar 

  20. S. Noui, Z. Charifi, H. Baaziz, G. Uğur, and Ş. Uğur, J. Elect. Mat. 48, 337 (2019).

    CAS  Article  Google Scholar 

  21. S.A. Khandy, I. Islam, D.C. Gupta, R. Khenata, and A. Laref, Sci. Rep. 9, 1475 (2019).

    Article  CAS  Google Scholar 

  22. P.D. Patel, S. Shinde, S.D. Gupta, and P.K. Jha, J. Elect. Mat. 48, 1634 (2019).

    CAS  Article  Google Scholar 

  23. M. Yin and P. Nash, J. Alloys Compd. 634, 70 (2015).

    CAS  Article  Google Scholar 

  24. T. Hori, M. Akimitsu, H. Miki, K. Ohoyoama, and Y. Yamaguchi, Appl. Phys. A 74, 737 (2002).

    Article  CAS  Google Scholar 

  25. M. Žic, K. Rode, N. Thiyagarajah, Y.C. Lau, D. Betto, J.M.D. Coey, S. Sanvito, K.J. O’Shea, C.A. Ferguson, D.A. MacLaren, and T. Archer, Phys. Rev. B 93, 140202 (2016).

    Article  CAS  Google Scholar 

  26. M. Gilleßen, and R. Dronskowski, Maßgeschneidertes und Analytik-Ersatz über die quantenchemischen Untersuchungen einiger ternärer intermetallischer Verbindungen (No. RWTH-CONV-113777), Fachgruppe Chemie (2010).

  27. S.V. Faleev, Y. Ferrante, J. Jeong, M.G. Samant, B. Jones, and S.S. Parkin, Phys. Rev. B 95, 045140 (2017).

    Article  Google Scholar 

  28. S.V. Faleev, Y. Ferrante, J. Jeong, M.G. Samant, B. Jones, and S.S. Parkin, Phys. Rev. Appl. 7, 034022 (2017).

    Article  Google Scholar 

  29. J. Balluff, Ph. D. thesis, Ab initio to application antiferromagnetic Heusler compounds for spintronics (2017).

  30. J. Balluff, K. Diekmann, G. Reiss, and M. Meinert, Phys. Rev. Mat. 1, 034404 (2017).

    Google Scholar 

  31. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    CAS  Article  Google Scholar 

  32. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

    CAS  Article  Google Scholar 

  33. Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).

    CAS  Article  Google Scholar 

  34. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Article  Google Scholar 

  35. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. M. Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys. Conden. Matter. 21, 395502 (2009).

    Article  Google Scholar 

  36. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  Google Scholar 

  37. W. Kohn and L. Sham, J. Phys. Rev. A 140, 1133 (1965).

    Article  Google Scholar 

  38. F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 50, 697 (1944).

    Google Scholar 

  39. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  40. M. Methfessel and A.T. Paxton, Phys. Rev. B 40, 3616 (1989).

    CAS  Article  Google Scholar 

  41. S.Q. Wang and H.Q. Ye, Phys. Status Solidi (b) 240, 45 (2003).

    CAS  Article  Google Scholar 

  42. N. Arıkan, A. İyigör, A. Candan, Ş. Uğur, Z. Charifi, H. Baaziz, and G. Uğur, J. Mater. Sci. 49, 4180 (2014).

    Article  CAS  Google Scholar 

  43. S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987).

    CAS  Article  Google Scholar 

  44. F. Semari, F. Dahmane, N. Baki, Y. Al-Douri, S. Akbudak, G. Uğur, Ş. Uğur, A. Bouhemadou, R. Khenata, and C.H. Voon, Chin. J. Phys. 56, 567 (2018).

    CAS  Article  Google Scholar 

  45. F. Taşkın, M. Atiş, O. Canko, S. Kervan, and N. Kervan, J. Magn. Magn. Mater. 426, 473 (2017).

    Article  CAS  Google Scholar 

  46. A. Candan, S. Akbudak, Ş. Uğur, and G. Uğur, J. Alloys Compd. 771, 664 (2019).

    CAS  Article  Google Scholar 

  47. Y. Feng and X. Xu, J. Supercond. Nov. Magn. 31, 1827 (2017).

    CAS  Article  Google Scholar 

  48. O. Amrich, M.E.A. Monir, H. Baltach, S.B. Omran, X.W. Sun, X. Wang, Y. Al-Douri, A. Bouhemadou, and R. Khenata, J. Supercond. Nov. Magn. 31, 241 (2018).

    CAS  Article  Google Scholar 

  49. A.A.M. Abadi, G. Forozani, S.M. Baizaee, and A. Gharaati, J. Supercond. Nov. Magn. 1-10 (2019).

  50. T. Kanomata, M. Kikuchi, and H. Yamauchi, J. Alloys Compd. 414, 1 (2006).

    CAS  Article  Google Scholar 

  51. P.D. Patel, S. Shinde, S.D. Gupta, S.D. Dabhi, and P.K. Jha, Comput. Mater. Sci. 15, 61 (2018).

    Google Scholar 

  52. P.D. Patel, S.M. Shinde, S.D. Gupta, and P.K. Jha, Mater. Res. Express 6, 076307 (2019).

    Article  Google Scholar 

  53. W. Voigt, Lehrbuch der Kristallphysik, 2nd ed. (Berlin: LeipzigTeubner Verlag, 1928), p. 954.

    Google Scholar 

  54. A. Reuss, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9, 49 (1929).

    CAS  Article  Google Scholar 

  55. R. Hill, Proc. Phys. Soc. Sec. A 65, 349 (1952).

    Article  Google Scholar 

  56. S.F. Pugh, Dublin Philos. Mag. J. Sci. 45, 823 (1954).

    CAS  Article  Google Scholar 

  57. X.H. Kang and J.M. Zhang, J. Phys. Chem. Solid. 119, 71 (2018).

    CAS  Article  Google Scholar 

  58. H. Fu, D. Li, F. Peng, T. Gao, and X. Cheng, Comput. Mater. Sci. 44, 774 (2008).

    CAS  Article  Google Scholar 

  59. G. Surucu, Mater. Chem. Phys. 203, 106 (2018).

    CAS  Article  Google Scholar 

  60. G. Surucu, K. Colakoglu, E. Deligoz, and N. Korozlu, J. Elect. Mat. 45, 4256 (2016).

    CAS  Article  Google Scholar 

  61. G. Surucu, C. Kaderoglu, E. Deligoz, and H. Ozisik, Mater. Chem. Phys. 189, 90 (2017).

    CAS  Article  Google Scholar 

  62. B. Kocak, Y.O. Ciftci, and G. Surucu, J. Elect. Mat. 46, 247 (2017).

    CAS  Article  Google Scholar 

  63. X.Q. Chen, H. Niu, D. Li, and Y. Li, Intermetallics 19, 1275 (2011).

    CAS  Article  Google Scholar 

  64. S.I. Ranganathan and M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 055504 (2008).

    Article  CAS  Google Scholar 

  65. P.D. Patel, S.B. Pillai, S.M. Shinde, S.D. Gupta, and P.K. Jha, Phys. B Condens. Matter 550, 376 (2018).

    CAS  Article  Google Scholar 

  66. J. Wu, B. Zhang, and Y. Zhan, J. Phys. Chem. Solid. 104, 207 (2017).

    CAS  Article  Google Scholar 

  67. A. Marmier, Z.A. Lethbridge, R.I. Walton, C.W. Smith, S.C. Parker, and K.E. Evans, Comput. Phys. Commun. 181, 2102 (2010).

    CAS  Article  Google Scholar 

  68. K. Biswas and C.W. Myles, Phys. Rev. B 75, 245205 (2007).

    Article  CAS  Google Scholar 

  69. H.B. Ozisik, K. Colakoglu, G. Surucu, and H. Ozisik, Comp. Mater. Sci. 50, 1070 (2011).

    CAS  Article  Google Scholar 

  70. P. Wachter, M. Filzmoser, and J. Rebizant, Phys. B Condens. Matter 293, 199 (2001).

    CAS  Article  Google Scholar 

  71. O.L. Anderson, J. Phys. Chem. Solid. 24, 909 (1963).

    CAS  Article  Google Scholar 

  72. O.L. Anderson, E. Schreiber, and N. Soga, Elastic Constants and Their Measurements (1973).

  73. M.E. Fine, L.D. Brown, and H.L. Marcus, Scr. Metal. 18, 951 (1984).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Candan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Candan, A. Magnetic, Electronic, Mechanic, Anisotropic Elastic and Vibrational Properties of Antiferromagnetic Ru2TGa (T = Cr, Mn, and Co) Heusler Alloys. J. Electron. Mater. 48, 7608–7622 (2019). https://doi.org/10.1007/s11664-019-07625-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07625-5

Keywords

  • Antiferromagnetics
  • Heusler alloys
  • electronic properties
  • mechanical properties
  • phonon dispersion