Skip to main content
Log in

Tunable Magnetism and Half Metallicity in Ti-Doped Heusler Alloy Co2CrAl: First-Principles Calculations

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Using the first-principles calculations within density functional theory (DFT), we investigated magnetism, electronic structures, and half-metallicity stability of Heusler compound Co2Cr1−xTi x Al. Besides, the origin of the half-metallic energy gap of Co2CrAl is also revealed. With Ti concentration increases, the magnetic moment of the Cr atom linearly increases, while that of Co and Cr atoms linearly decreases The total magnetic moment of Co2Cr1−x Ti x Al agrees with the Slater–Pauling rule very well. The Fermi level shifts from a low energy zone of the minority spin gap to a highenergy zone with increasing Ti concentration x, and it lies in the middle of the gap when x = 0.5. The corresponding doped compound Co2Cr0.5Ti0.5Al therefore possesses the most stable half metallicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnár, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  2. Velev, J.P., Dowbena, P.A., Tsymbal, E.Y., Jenkins, S.J., Caruso, A.N.: Surf. Sci. Rep. 63, 25 (2008)

    Article  Google Scholar 

  3. Zhu, J.G., Park, C.: Mater. Today 9, 36–45 (2006)

    Article  Google Scholar 

  4. Moodera, J.S., Kinder, L.R., Wong, T.M., Meservey, R.: Phys. Rev. Lett. 74, 3273 (1995)

    Article  ADS  Google Scholar 

  5. Jullière, M.: Phys. Lett. A 54, 225 (1975)

    Article  ADS  Google Scholar 

  6. de Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J.: Phys. Rev. Lett. 50, 2024 (1983)

    Article  ADS  Google Scholar 

  7. Kübler, J., Fecher, G.H., Felse, C.: Phys. Rev. B 76, 024414 (2007)

    Article  ADS  Google Scholar 

  8. Miura, Y., Uchida, H., Oba, Y., Abe, K., Shirai, M.: Phys. Rev. B 78, 064416 (2008)

    Article  ADS  Google Scholar 

  9. Feng, Y., Chen, X., Zhou, T., Yuan, H., Chen, H.: Appl. Surf. Sci. 346, 1–10 (2015)

    Article  ADS  Google Scholar 

  10. Hirohata, A., Kurebayashi, H., Okamura, S., Kikuchi, M., Masaki, T., Nozaki, T., Tezuka, N., Inomata, K.: J. Appl. Phys. 97, 103714 (2005)

    Article  ADS  Google Scholar 

  11. Nagao, K., Miura, Y., Shirai, M.: Phys. Rev. B 73, 104447 (2006)

    Article  ADS  Google Scholar 

  12. Nagao, K., Shirai, M., Miura, Y.: J. Phys.: Condens. Matter 16, 5725 (2004)

    ADS  Google Scholar 

  13. Nagao, K., Miura, Y., Shirai, M.: Phys. Rev. B 73, 104447 (2006)

    Article  ADS  Google Scholar 

  14. Kudryavtsev, Y.V., Lee, Y.P, Yoo, Y.J., Seo, M.S., Kim, J.M., Hwang, J.S., Dubowik, J., Kim, K.W., Choi, E.H., Prokhnenko, O.: Eur. Phys. J. B 85, 19 (2012)

    Article  ADS  Google Scholar 

  15. Özdoğan, K., Aktaş, B., Galanakis, I., Şaşoğlu, E.: J. Appl. Phys. 101, 073910 (2007)

    Article  ADS  Google Scholar 

  16. Picozzi, S., Continenza, A., Freeman, A.J.: Phys. Rev. B 69, 094423 (2004)

    Article  ADS  Google Scholar 

  17. Mauri, D., Scholl, D., Siegmann, H.C., Kay, E.: Phys. Rev. Lett. 61, 758 (1988)

    Article  ADS  Google Scholar 

  18. MacDonald, A.H., Jungwirth, T., Kasner, M.: Phys. Rev. Lett. 81, 705 (1988)

    Article  ADS  Google Scholar 

  19. Shang, C.H., Nowak, J., Jansen, R., Moodera, J.S.: Phys. Rev. B 58, R2917 (1998)

    Article  ADS  Google Scholar 

  20. Hordequin, C., Ristoiu, D., Ranno, L., Pierre, J.: Eur. Phys. J. B 16, 287 (2000)

    Article  ADS  Google Scholar 

  21. Borca, C.N., Komesu, T., Jeong, H.K., Dowben, P.A., Ristoiu, D., Hordequin, Ch., Nozi‘eres, J.P., Pierre, J., Stadler, S., Idzerda, Y.U.: Phys. Rev. B 64, 052409 (2001)

    Article  ADS  Google Scholar 

  22. Chen, Y., Wu, B., Feng, Y., Yuan, H.K., Chen, H.: Eur. Phys. J. B 24, 87 (2014)

    Google Scholar 

  23. Wu, B., Yuan, H.K., Kuang, A., Feng, Y., Chen, H.: J. Phys. D: Appl. Phys. 44, 405301 (2011)

    Article  Google Scholar 

  24. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  25. Blöchl, P.E.: Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

All the calculations were performed using the High Performance Computing Center of the School of Physics and Electronic Engineering of Jiangsu Normal University.

Funding

This work was funded by the Doctor Foundation of Jiangsu Normal University (NO. 16XLR022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Xu, X. Tunable Magnetism and Half Metallicity in Ti-Doped Heusler Alloy Co2CrAl: First-Principles Calculations. J Supercond Nov Magn 31, 1827–1832 (2018). https://doi.org/10.1007/s10948-017-4410-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4410-0

Keywords

Navigation