Skip to main content

Advertisement

Log in

Graphene Incorporated Nanocomposite Anode for Low Temperature SOFCs

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The current energy assets based on fossil fuel are being used extensively. Thus, the high utilization of these sources has created an alarming situation for scientists and researchers to investigate alternative energy conversion sources followed by devices. Fuel cell technology is an emerging field of research due to high efficiency and environmentally friendly energy conversion. The solid oxide fuel cell is a promising candidate as an alternative energy conversion technology. In this context, graphene incorporated composite anode materials have been synthesized by solid state reaction with anode composition Al0.1Ni0.2Zn0.7 oxides, and different amounts of 1 wt.%, 1.3 wt.%, and 1.5 wt.% graphene are then incorporated in the prepared composite material. The crystal structure and surface morphology have been analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The crystallite sizes evaluated by XRD are found in the range of 42–56 nm followed by confirming with SEM images by line drawing. Electrical conductivity has been measured at the function of temperature from 300°C to 650°C by a direct current (DC) four-probe method and maximum value is found to be 0.53 Scm−1 at 370°C with 1.3% graphene incorporation. The maximum power density has been achieved of 375 mWcm−2 at 600°C with 1.3% graphene incorporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mumtaz, M.A. Ahmad, R. Raza, M.S. Arshad, B. Ahmed, M.N. Ashiq, and G. Abbas, Ceram. Int. 43, 14354 (2017).

    Article  CAS  Google Scholar 

  2. A. Ideris, E. Croiset, M. Pritzker, and A. Amin, Int. J. Hydrogen Energy 42, 23118 (2017).

    Article  CAS  Google Scholar 

  3. F. Hussain, G. Abbas, M.A. Ahmad, R. Raza, Z.U. Rehman, S. Mumtaz, and S. Dilshad, Ceram. Int. 45, 1077 (2019).

    Article  CAS  Google Scholar 

  4. J.J. Baschuk and L. Xianguo, Int. J. Energy Res. 25, 695 (2001).

    Article  CAS  Google Scholar 

  5. E. Guk, V. Venkatesan, Y. Sayan, L. Jackson, and J.S. Kim, Sci. Rep. 9, 2161 (2019).

    Article  Google Scholar 

  6. S. Suda, M. Itagaki, E. Node, S. Takahashi, M. Kawano, H. Yoshida, and T. Inagaki, J. Eur. Ceram. Soc. 26, 593 (2006).

    Article  CAS  Google Scholar 

  7. M.A. Khan, C. Xu, Z. Song, R. Raza, M.A. Ahmad, G. Abbas, and B. Zhu, Int. J. Hydrogen Energy 43, 6310 (2018).

    Article  Google Scholar 

  8. Y.P. Fu, S.B. Wen, and C.H. Lu, J. Am. Ceram. Soc. 91, 127 (2008).

    Article  CAS  Google Scholar 

  9. X. Fang, G. Zhu, C. Xia, X. Liu, and G. Meng, Solid State Ion. 168, 31 (2004).

    Article  CAS  Google Scholar 

  10. C. Yang, Z. Yang, C. Jin, G. Xiao, F. Chen, and M. Han, Adv. Mater. 24, 1439 (2012).

    Article  CAS  Google Scholar 

  11. Z. Yang, N. Xu, M. Han, and F. Chen, Int. J. Hydrogen Energy 39, 7402 (2014).

    Article  CAS  Google Scholar 

  12. Z. Du, H. Zhao, S. Yi, Q. Xia, Y. Gong, Y. Zhang, and K. Świerczek, ACS Nano 10, 8660 (2016).

    Article  CAS  Google Scholar 

  13. J. Liu, A. Cao, J. Si, L. Zhang, Q. Hao, and Y. Liu, NANO 11, 1650118 (2016).

    Article  CAS  Google Scholar 

  14. T. Gan, G. Ding, X. Zhi, L. Fan, N. Hou, X. Yao, Y. Zhao, and Y. Li, Catal. Today. 327, 220 (2019).

    Article  CAS  Google Scholar 

  15. Y. Yang, Z. Yang, Y. Chen, F. Chen, and S. Peng, J. Electrochem. Soc. 166, 109 (2019).

    Article  Google Scholar 

  16. J.B. Goodenough and Y.H. Huang, J. Power Sources 173, 1 (2007).

    Article  CAS  Google Scholar 

  17. B. Zhu, X. Liu, P. Zhou, X. Yang, Z. Zhu, and W. Zhu, Electrochem. Commun. 3, 566 (2001).

    Article  CAS  Google Scholar 

  18. C. Xia and M. Liu, Adv. Mater. 14, 521 (2002).

    Article  CAS  Google Scholar 

  19. A. Rifau, Z. Zainal, D. Mutharasu, A. Fauzi, Y. Kiros, B. Zhu, and R. Zanzi Vigouroux, Am. J. Appl. Sci. 3, 2020 (2006).

    Article  CAS  Google Scholar 

  20. T. Jardiel, M.T. Caldes, F. Moser, J. Hamon, G. Gauthier, and O. Joubert, Solid State Ion. 181, 894 (2010).

    Article  CAS  Google Scholar 

  21. Z. Gong, W. Sun, Z. Jin, L. Miao, and W. Liu, ACS Appl. Energy Mater. 1, 3521 (2018).

    Article  CAS  Google Scholar 

  22. C.E.E. Rao, A.E. Sood, K.E. Subrahmanyam, and A. Govindaraj, Angew. Chem. Int. Ed. 48, 7752 (2009).

    Article  CAS  Google Scholar 

  23. M.J. Allen, V.C. Tung, and R.B. Kaner, Chem. Rev. 110, 132 (2009).

    Article  Google Scholar 

  24. L. Zhang, G. Zhang, H.B. Wu, L. Yu, and X.W. Lou, Adv. Mater. 25, 2589 (2013).

    Article  CAS  Google Scholar 

  25. Y. Sun, X. Wang, B. Tang, J. Ban, Y. He, W. Huang, W. Huang, C. Tao, H. Luo, and J. Sun, Mater. Lett. 189, 54 (2017).

    Article  CAS  Google Scholar 

  26. B. Zheng, J. Wang, F.B. Wang, and X.H. Xia, J. Mater. Chem. 2, 9079 (2014).

    Article  CAS  Google Scholar 

  27. B. Fuchsbichler, C. Stangl, H. Kren, F. Uhlig, and S. Koller, J. Power Sources 196, 2889 (2011).

    Article  CAS  Google Scholar 

  28. Z.S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhao, F. Li, and H.M. Cheng, ACS Nano 4, 3187 (2010).

    Article  CAS  Google Scholar 

  29. E. Pollak, B. Geng, K.J. Jeon, I.T. Lucas, T.J. Richardson, F. Wang, and R. Kostecki, Nano Lett. 10, 3386 (2010).

    Article  CAS  Google Scholar 

  30. E. Antolini, Mater. Chem. Phys. 78, 563 (2003).

    Article  CAS  Google Scholar 

  31. Y. Jee, A. Karimaghaloo, A.M. Andrade, H. Moon, Y. Li, J.W. Han, S. Ji, H. Ishihara, P.C. Su, S.W. Cha, and V. Tung, C. Fuel Cells 17, 344 (2017).

    Article  CAS  Google Scholar 

  32. Y. Jee, H. Moon, M.H. Lee, Meeting Abstracts the Electrochemical Society. 5, 352 (2013).

  33. A.C.H. Tsang, H.Y.H. Kwok, and D.Y.C. Leung, Solid State Ion. 67, A1 (2017).

    CAS  Google Scholar 

  34. A. Sinha, D.N. Miller, and J.T.S. Irvine, J. Mater. Chem. A. 4, 11117 (2016).

    Article  CAS  Google Scholar 

  35. D. Marinha and M. Belmonte, J. Eur. Ceram. Soc. 39, 389 (2019).

    Article  CAS  Google Scholar 

  36. F. Jiang, Y. Yu, Y. Wang, A. Feng, and L. Song, Mater. Lett. 200, 39 (2017).

    Article  CAS  Google Scholar 

  37. C. Xu, X. Wu, J. Zhu, and X. Wang, Carbon 2, 386 (2008).

    Article  Google Scholar 

  38. D. Cai and M. Song, J. Mater. Chem. 17, 3678 (2007).

    Article  CAS  Google Scholar 

  39. G. Abbas, R. Raza, M. Ashfaq, M.A. Chaudhry, A. Khan, I. Ahmad, and B. Zhu, Int. J. Energy Res. 38, 518 (2014).

    Article  CAS  Google Scholar 

  40. M.J. Hussain, R. Raza, M. Ahmad, A. Ali, I. Ahmad, W.A. Syed, and G. Abbas, Int. J. Mod. Phys. B 30, 1650161 (2016).

    Article  CAS  Google Scholar 

  41. N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, A review. Prog. Mater Sci. 72, 141 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

COMSATS University Islamabad, Lahore Campus and Virtual University of Pakistan are highly acknowledged for facilitating to complete this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghazanfar Abbas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, K., Ahmad, M.A., Raza, R. et al. Graphene Incorporated Nanocomposite Anode for Low Temperature SOFCs. J. Electron. Mater. 48, 7507–7514 (2019). https://doi.org/10.1007/s11664-019-07589-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07589-6

Keywords

Navigation