Skip to main content

Nanocomposites of Carbon for Fuel Cells

  • Chapter
  • First Online:
NanoCarbon: A Wonder Material for Energy Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 137 Accesses

Abstract

A vast number of resources have been invested into the design of intermediate and low-temperature fuel cells such as the microbial fuel cell (MFC), proton exchange membrane fuel cell (PEMFC), direct borohydride fuel cell (DBFC), and direct methanol fuel cell (DMFC). This class of fuel cells has displayed varied limitations owing to their respective principal components. Hence, the need to investigate different materials and nanocomposites with the capacity to enhance the performance of fuel cells. Due to the exceptional properties of carbon molecules in their nano state, nanocarbons have gained global attention as catalyst supports in fuel cell applications. The triumphs and challenges of the application of carbon nanotube-based electrocatalysts in fuel cell technology have been presented in this book chapter. This chapter will review the application of carbon-based nanocomposite materials in the intermediate processes of MFC, PEMFC, DBFC, DMFC, and other recently designed fuel cells. Comparative study of the mechanism of action, applications, yield, merits, and demerits of various carbon-based nanocomposite materials will be assessed. Recent advances in important cutting-edge synthetic routes will be assessed. The sole purpose of this work is to act as a substantive reference for the application of carbon-based nanocomposite fuel cell energy generation reviews.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sreethawong, T., Chatsiriwatana, S., Rangsunvigit, P., Chavadej, S.: Hydrogen production from cassava wastewater using an anaerobic sequencing batch reactor: effects of operational parameters, COD: N ratio, and organic acid composition. Int. J. Hydrog. Energy 35, 4092–4102 (2010)

    Article  CAS  Google Scholar 

  2. Asif, M., Muneer, T.: Energy supply, its demand and security issues for developed and emerging economies. Renew. Sustain. Energy Rev. 11, 1388–1413 (2007)

    Google Scholar 

  3. Carrette, L., Friedrich, K.A., Stimming, U.: Fuel cells: Principles, types, fuels, and applications. ChemPhysChem 1, 162–193 (2000)

    Article  CAS  PubMed  Google Scholar 

  4. Shaari, N., Kamarudin, S.: Graphene in electrocatalyst and proton conductiong membrane in fuel cell applications: an overview. Renew. Sustain. Energy Rev. 69, 862–870 (2017)

    Google Scholar 

  5. Chang, H., Joo, S.H., Pak, C.: Synthesis and characterization of mesoporous carbon for fuel cell applications. J. Mater. Chem. 17, 3078–3088 (2007)

    Article  CAS  Google Scholar 

  6. Kar, K.K., Rana, S., Pandey, J.: Handbook of Polymer Nanocomposites Processing, Performance and Application. Springer (2015)

    Google Scholar 

  7. Wang, Y., Chen, K.S., Mishler, J., Cho, S.C., Adroher, X.C.: A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 88, 981–1007 (2011)

    Article  CAS  Google Scholar 

  8. Barbir, F.: PEM Fuel Cells: Theory and Practice. Academic Press 2012

    Google Scholar 

  9. Vielstich, W., Gasteiger, H.A., Yokokawa, H.: Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics and Durability, Volumes 5 and 6. Wiley & Sons 2009

    Google Scholar 

  10. Iqbal, M.Z., Rehman, A.-U., Siddique, S.: Prospects and challenges of graphene based fuel cells. J. Energy Chem. 39, 217–234 (2019)

    Article  Google Scholar 

  11. Merle, G., Wessling, M., Nijmeijer, K.: Anion exchange membranes for alkaline fuel cells: a review. J. Membr. Sci. 377, 1–35 (2011)

    Article  CAS  Google Scholar 

  12. Singh, M., Zappa, D., Comini, E.: Solid oxide fuel cell: decade of progress, future perspectives and challenges. Int. J. Hydrog. Energy 46, 27643–27674 (2021)

    Article  CAS  Google Scholar 

  13. Cheng, K., He, D., Peng, T., Lv, H., Pan, M., Mu, S.: Porous graphene supported Pt catalysts for proton exchange membrane fuel cells. Electrochim. Acta 132, 356–363 (2014)

    Article  CAS  Google Scholar 

  14. Jafri, R.I., Rajalakshmi, N., Dhathathreyan, K., Ramaprabhu, S.: Nitrogen doped graphene prepared by hydrothermal and thermal solid state methods as catalyst supports for fuel cell. Int. J. Hydrog. Energy 40, 4337–4348 (2015)

    Google Scholar 

  15. Yang, M., Jeong, J.-M., Lee, K.G., Lee, S.J., Choi, B.G.: Hierarchical porous microspheres of the CO3O4@ graphene with enhanced electrocatalytic performance for electrochemical biosensors. Biosens. Bioelectron. 89, 612–619 (2017)

    Article  CAS  PubMed  Google Scholar 

  16. Si, P., Huang, Y., Wang, T., Ma, J.: Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv. 3, 3487–3502 (2013)

    Article  CAS  Google Scholar 

  17. Zhao, S., Li, Y., Yin, H., Liu, Z., Luan, E., Zhao, F., Tang, Z., Liu, S.: Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Sci. Adv. 1, e1500372 (2015)

    Google Scholar 

  18. Ji, K., Chang, G., Oyama, M., Shang, X., Liu, X., He, Y.: Efficient and clean synthesis of graphene supported platinum nanoclusters and its application in direct methanol fuel cell. Electrochim. Acta 85, 84–89 (2012)

    Article  CAS  Google Scholar 

  19. Yoo, E., Okada, T., Akita, T., Kohyama, M., Honma, I., Nakamura, J.: Sub-nano-Pt cluster supported on graphene nanosheets for co tolerant catalysts in polymer electrolyte fuel cells. J. Power. Sources 196, 110–115 (2011)

    Article  CAS  Google Scholar 

  20. Lei, M., Liang, C., Wang, Y., Huang, K., Ye, C., Liu, G., Wang, W., Jin, S., Zhang, R., Fan, D.: Durable platinum/graphene catalysts assisted with polydiallyldimethylammonium for proton-exchange membrane fuel cells. Electrochim. Acta 113, 366–372 (2013)

    Article  CAS  Google Scholar 

  21. Liu, Y., Huang, Y., Xie, Y., Yang, Z., Huang, H., Zhou, Q.: Preparation of highly dispersed CuPt nanoparticles on ionic-liquid-assisted graphene sheets for direct methanol fuel cell. Chem. Eng. J. 197, 80–87 (2012)

    Article  CAS  Google Scholar 

  22. Liu, X., Yi, L., Wang, X., Su, J., Song, Y., Liu, J.: Graphene supported platinum nanoparticles as anode electrocatalyst for direct borohydride fuel cell. Int. J. Hydrog. Energy 37, 17984–17991 (2012)

    Article  CAS  Google Scholar 

  23. Cho, S., Yang, H., Lee, D., Park, S., Kim, W.: Electrochemical properties of Pt/graphene intercalated by carbon black and its application in polymer electrolyte membrane fuel cell. J. Power. Sources 225, 200–206 (2013)

    Article  CAS  Google Scholar 

  24. Hsieh, C.-T., Gu, J.-L., Chen, Y.-C., Tzou, D.-Y.: Pulse microwave synthesis of palladium catalysts on graphene electrodes for proton exchange membrane fuel cells. Electrochim. Acta 98, 39–47 (2013)

    Article  CAS  Google Scholar 

  25. Liu, J., Qiao, Y., Guo, C.X., Lim, S., Song, H., Li, C.M.: Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells. Biores. Technol. 114, 275–280 (2012)

    Article  CAS  Google Scholar 

  26. Zhang, Y., Mo, G., Li, X., Ye, J.: Iron tetrasulfophthalocyanine functionalized graphene as a platinum-free cathodic catalyst for efficient oxygen reduction in microbial fuel cells. J. Power. Sources 197, 93–96 (2012)

    Article  CAS  Google Scholar 

  27. de la Zerda, A., Liu, Z., Zavaleta, C., Bodapati, S., Teed, R., Vaithilingam, S., Ma, T.-J., Oralkan, O., Chen, X., Khuri-Yakub, B.T.: Enhanced sensitivity carbon nanotubes as targeted photoacoustic molecular imaging agents. In: Photons Plus Ultrasound: Imaging and Sensing 2009. SPIE (2009)

    Google Scholar 

  28. Cao, L., Scheiba, F., Roth, C., Schweiger, F., Cremers, C., Stimming, U., Fuess, H., Chen, L., Zhu, W., Qiu, X.: Novel nanocomposite Pt/RuO2⋅xH2O/carbon nanotube catalysts for direct methanol fuel cells. Angew. Chem. 118, 5441–5445 (2006)

    Article  Google Scholar 

  29. Guo, W., Li, X., Cui, L., Li, Y., Zhang, H., Ni, T.: Promoting the anode performance of microbial fuel cells with nano-molybdenum disulfide/carbon nanotubes composite catalyst. Bioprocess Biosyst. Eng. 1–12 (2022)

    Google Scholar 

  30. Molla-Abbasi, P., Janghorban, K., Asgari, M.S.: A novel heteropolyacid-doped carbon nanotubes/Nafion nanocomposite membrane for high performance proton-exchange methanol fuel cell applications. Iran. Polym. J. 27, 77–86 (2018)

    Article  CAS  Google Scholar 

  31. Sigwadi, R., Dhlamini, M., Mokrani, T., Nemavhola, F.: Enhancing the mechanical properties of zirconia/Nafion® nanocomposite membrane through carbon nanotubes for fuel cell application. Heliyon 5, e02112 (2019)

    Google Scholar 

  32. Vinothkannan, M., Kim, A.R., Ryu, S.K., Yoo, D.J.: Structurally modulated and functionalized carbon nanotubes as potential filler for Nafion matrix toward improved power output and durability in proton exchange membrane fuel cells operating at reduced relative humidity. J. Membr. Sci. 649, 120393 (2022)

    Google Scholar 

  33. Ghasemi, M., Daud, W.R.W., Hassan, S.H., Jafary, T., Rahimnejad, M., Ahmad, A., Yazdi, M.H.: Carbon nanotube/polypyrrole nanocomposite as a novel cathode catalyst and proper alternative for Pt in microbial fuel cell. Int. J. Hydrog. Energy 41, 4872–4878 (2016)

    Google Scholar 

  34. Mishra, P., Jain, R.: Electrochemical deposition of MWCNT-MnO2/PPy nano-composite application for microbial fuel cells. Int. J. Hydrog. Energy 41, 22394–22405 (2016)

    Google Scholar 

  35. Shukla, A., Bhat, S.D., Pillai, V.K.: Simultaneous unzipping and sulfonation of multi-walled carbon nanotubes to sulfonated graphene nanoribbons for nanocomposite membranes in polymer electrolyte fuel cells. J. Membr. Sci. 520, 657–670 (2016)

    Article  CAS  Google Scholar 

  36. Mirzaei, F., Parnian, M.J., Rowshanzamir, S.: Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell. Energy 138, 696–705 (2017)

    Article  CAS  Google Scholar 

  37. Jha, N., Jafri, R.I., Rajalakshmi, N., Ramaprabhu, S.: Graphene-multi walled carbon nanotube hybrid electrocatalyst support material for direct methanol fuel cell. Int. J. Hydrog. Energy 36, 7284–7290 (2011)

    Article  CAS  Google Scholar 

  38. Nazal, M.K., Olakunle, O.S., Al-Ahmed, A., Merzougui, B., Abualkibash, A., Sultan, A., Yousaf, A.B., Zaidi, S.J.: Precious metal free Ni/Cu/Mo trimetallic nanocomposite supported on multi-walled carbon nanotubes as highly efficient and durable anode-catalyst for alkaline direct methanol fuel cells. J. Electroanal. Chem. 823, 98–105 (2018)

    Article  CAS  Google Scholar 

  39. Shukla, A., Dhanasekaran, P., Sasikala, S., Nagaraju, N., Bhat, S.D., Pillai, V.K.: Nanocomposite membrane electrolyte of polyaminobenzene sulfonic acid grafted single walled carbon nanotubes with sulfonated polyether ether ketone for direct methanol fuel cell. Int. J. Hydrog. Energy 44, 27564–27574 (2019)

    Article  CAS  Google Scholar 

  40. Hu, R., Wu, C., Hou, K., Xia, C., Yang, J., Guan, L., Li, Y.: Tailoring the electrocatalytic oxygen reduction reaction pathway by tuning the electronic states of single-walled carbon nanotubes. Carbon 147, 35–42 (2019)

    Article  CAS  Google Scholar 

  41. Wu, G., Xu, B.-Q.: Carbon nanotube supported Pt electrodes for methanol oxidation: a comparison between multi-and single-walled carbon nanotubes. J. Power Sources 174, 148–158 (2007)

    Google Scholar 

  42. Neelakandan, S., Liu, D., Wang, L., Hu, M., Wang, L.: Highly branched poly (arylene ether)/surface functionalized fullerene‐based composite membrane electrolyte for DMFC applications. Int. J. Energy Res. 43, 3756–3767 (2019)

    Google Scholar 

  43. Rambabu, G., Bhat, S.D.: Sulfonated fullerene in sPEEK matrix and its impact on the membrane electrolyte properties in direct methanol fuel cells. Electrochim. Acta 176, 657–669 (2015)

    Google Scholar 

  44. Rambabu, G., Nagaraju, N., Bhat, S.D.: Functionalized fullerene embedded in Nafion matrix: a modified composite membrane electrolyte for direct methanol fuel cells. Chem. Eng. J. 306, 43–52 (2016)

    Google Scholar 

  45. Abdelwahab, I., Abdelwahab, A.: Black phosphorous/palladium functionalized carbon aerogel nanocomposite for highly efficient ethanol electrooxidation. RSC Adv. 12, 31225–31234 (2022)

    Google Scholar 

  46. Fu, G., Yan, X., Chen, Y., Xu, L., Sun, D., Lee, J.M., Tang, Y.: Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel‐supported Ni/MnO particles. Adv. Mater. 30, 1704609 (2018)

    Google Scholar 

  47. Jiang, L.-L., Zeng, M., Wang, C.-Y., Luo, Z.-H., Li, H.-Y., Yi, Y.: Pt-Ni alloy catalyst supported on carbon aerogel via one-step method for oxygen reduction reaction. J. Solid State Electrochem. 1–10 (2022)

    Google Scholar 

  48. Zhong, F., Zeng, Z., Liu, Y., Hou, R., Nie, X., Jia, Y., Xi, J., Liu, H., Niu, W., Zhang, F.: Modification of sulfonated poly (etherether ketone) composite polymer electrolyte membranes with 2D molybdenum disulfide nanosheet-coated carbon nanotubes for direct methanol fuel cell application. Polymer 249, 124839 (2022)

    Google Scholar 

  49. Lai, B.L., Xiao, Z.H., Jiang, P.Y., Xie, Y., Li, N., Liu, Z.Q.: Two‐dimensional Ag-Fe-N/C nanosheets as efficient cathode catalyst to improve power‐generation performance of microbial fuel cells. ChemElectroChem 9, e202101699 (2022)

    Google Scholar 

  50. Madih, K., El-Shazly, A.H., Elkady, M.F., Aziz, A.N., Youssef, M.E., Khalifa, R.E.: A facile synthesis of cellulose acetate reinforced graphene oxide nanosheets as proton exchange membranes for fuel cell applications. J. Saudi Chem. Soc. 26, 101435 (2022)

    Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their helpful comments. We are grateful for financial support from the Walter Sisulu Directorate of Research and Innovation and Eskom Tertiary Education Support (TESP). In addition, the authors are grateful for the excellent support of WSU staff members.

Funding

This research was funded by the Walter Sisulu University grant for Renewable Energy Technologies RNA, and Tertiary Education Support Program (TESP), Eskom Holdings SOC Limited Reg. No. 2002/015527/06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Amaku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amaku, J.F., Taziwa, R. (2024). Nanocomposites of Carbon for Fuel Cells. In: Gupta, R.K. (eds) NanoCarbon: A Wonder Material for Energy Applications. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-9935-4_14

Download citation

Publish with us

Policies and ethics