Skip to main content
Log in

Thermal Stability, Mechanical Properties and Thermoelectric Performance of Cu11TrSb4S13 (Tr = Mn, Fe, Co, Ni, Cu, and Zn)

  • Topical Collection: International Conference on Thermoelectrics 2019
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Tetrahedrites substituted with transition elements, Cu11TrSb4S13 (Tr = Mn, Fe, Co, Ni, Cu, and Zn), were synthesized by mechanically alloying and hot pressing, and their thermal stability, mechanical properties and thermoelectric performance, including phase transition (decomposition), elemental redistributions, microstructures, thermoelectric parameters, hardness, and bending strength, were examined. Hot-pressed compacts showed relative densities of 97.4–99.8%. As the atomic number of the transition element substituted for 29Cu decreased (28Ni, 27Co, 26Fe, and 25Mn), the lattice constant increased; however, the lattice constant also increased when 29Cu was substituted with 30Zn (higher atomic number). The electrical conductivity of tetrahedrites doped with transition elements decreased compared with that of intrinsic tetrahedrite Cu12Sb4S13. This was because transition elements were successfully substituted at Cu+ sites, and the carrier (hole) concentration decreased owing to electron donation. The Seebeck coefficient of Cu11TrSb4S13 was greater than that of Cu12Sb4S13, except for Cu11FeSb4S13. However, the thermal conductivity of the tetrahedrite decreased upon the substitution of transition elements owing to enhanced impurity phonon scattering. Endothermic reactions were observed at temperatures between 882 K and 984 K, which corresponded to each melting point, and the tetrahedrite melting point increased upon doping with transition elements. The Vickers hardness and three-point bending strength of Cu12Sb4S13 were 2.2 GPa and 23 MPa, respectively. However, the hardness (2.5–2.7 GPa) and bending strength (23–44 MPa) increased for Cu11TrSb4S13 as the result of the solid-solution hardening effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).

    Article  CAS  Google Scholar 

  2. K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano, J. Appl. Phys. 113, 043712 (2013).

    Article  Google Scholar 

  3. X. Fan, E.D. Case, X. Lu, and D.T. Morelli, J. Mater. Sci. 48, 7540 (2013).

    Article  CAS  Google Scholar 

  4. J. Heo, G. Laurita, S. Muir, M.A. Subramanian, and D.A. Keszler, Chem. Mater. 26, 2047 (2014).

    Article  CAS  Google Scholar 

  5. P. Vaqueiro, G. Guelou, A. Kaltzoglou, R.I. Smith, T. Barbier, E. Guilmeau, and A.V. Powell, Chem. Mater. 29, 4080 (2017).

    Article  CAS  Google Scholar 

  6. K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, Appl. Phys. Exp. 5, 051201 (2012).

    Article  Google Scholar 

  7. A.P. Goncalves, E.B. Lopes, M.F. Montemor, J. Monnier, and B. Lenoir, J. Electron. Mater. 47, 2880 (2018).

    Article  CAS  Google Scholar 

  8. J.H. Pi, S.G. Kwak, S.Y. Kim, G.E. Lee, and I.H. Kim, J. Electron. Mater. 48, 1991 (2019).

    Article  CAS  Google Scholar 

  9. R. Chetty, A. Bali, and R.C. Mallik, J. Mater. Chem. C 3, 12364 (2015).

    Article  CAS  Google Scholar 

  10. Y. Bouyrie, C. Candolfi, V. Ohorodniichuk, B. Malaman, A. Dauscher, J. Tobola, and B. Lenoir, J. Mater. Chem. C 3, 10476 (2015).

    Article  CAS  Google Scholar 

  11. R. Chetty, A. Bali, M.H. Naik, G. Rogl, P. Rogl, M. Jain, S. Suwas, and R.C. Mallik, Acta Mater. 100, 266 (2015).

    Article  CAS  Google Scholar 

  12. S.Y. Kim, S.G. Kwak, J.H. Pi, G.E. Lee, and I.H. Kim, J. Electron. Mater. 48, 1857 (2019).

    Article  CAS  Google Scholar 

  13. S. Tippireddy, R. Chetty, M.H. Naik, M. Jain, K. Chattopadhyay, and R.C. Mallik, J. Phys. Chem. C 122, 8735 (2018).

    Article  CAS  Google Scholar 

  14. D.I. Nasonova, I.A. Presniakov, A.V. Sobolev, V.Y. Verchenko, A.A. Tsirlin, Z. Wei, E.V. Dikarev, and A.V. Shevelkov, J. Solid State Chem. 235, 28 (2016).

    Article  CAS  Google Scholar 

  15. E. Makovicky, K. Forcher, W. Lottermoser, and G. Amthauer, Miner. Petrol. 43, 73 (1990).

    Article  CAS  Google Scholar 

  16. K. Tatsuka and N. Morimoto, Am. Miner. 62, 1101 (1977).

    CAS  Google Scholar 

  17. R.R. Seal, E.J. Essene, and W.C. Kelly, Can. Miner. 28, 725 (1990).

    CAS  Google Scholar 

  18. T. Barbier, P. Lemoine, S. Gascoin, O.I. Lebedev, A. Kaltzoglou, P. Vaqueiro, A.V. Powell, R.I. Smith, and E. Guilmeau, J. Alloys Compd. 634, 253 (2015).

    Article  CAS  Google Scholar 

  19. D.W. Bishop, P.S. Thomas, and A.S. Ray, J. Therm. Anal. Calorim. 56, 429 (1999).

    Article  CAS  Google Scholar 

  20. R. Chetty, D.S.P. Kumar, G. Rogl, P. Rogl, E. Bauer, H. Michor, S. Suwas, S. Puchegger, G. Giester, and R.C. Mallik, Phys. Chem. Chem. Phys. 17, 1716 (2015).

    Article  CAS  Google Scholar 

  21. F.H. Sun, C.F. Wu, Z. Li, Y. Pan, J. Dong, and J.F. Li, RSC Adv. 7, 18909 (2017).

    Article  CAS  Google Scholar 

  22. F.H. Sun, J. Dong, S. Dey, C.F. Wu, Y. Pan, H. Tang, and J.F. Li, Sci. Chin. Mater. 61, 1209 (2018).

    Article  CAS  Google Scholar 

  23. J. Wang, X. Li, and Y. Bao, Mater. Sci. Forum 847, 161 (2016).

    Article  Google Scholar 

  24. A. Guler, S. Ballikaya, C. Boyraz, C. Okay, D. Shulgin, and B. Rameev, J. Solid State Chem. 269, 547 (2019).

    Article  CAS  Google Scholar 

  25. X. Lu and D.T. Morelli, J. Electron. Mater. 43, 1983 (2014).

    Article  CAS  Google Scholar 

  26. J. Wang, M. Gu, Y. Bao, X. Li, and L. Chen, J. Electron. Mater. 45, 2274 (2016).

    Article  CAS  Google Scholar 

  27. T.Y. Ko, M. Shellaiah, and K.W. Sun, Sci. Rep. 6, 35086 (2016).

    Article  CAS  Google Scholar 

  28. Y. Bouyie, C. Candolfi, A. Dauscher, B. Malaman, and B. Lenoir, Chem. Mater. 27, 8354 (2015).

    Article  Google Scholar 

  29. K. Edalati and Z. Horita, Scr. Mater. 64, 161 (2011).

    Article  CAS  Google Scholar 

  30. J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, Mater. Sci. Eng. B 117, 334 (2005).

    Article  Google Scholar 

  31. L. Gao, R.S. Chena, and E.H. Hana, J. Alloys Compd. 481, 379 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Industrial Core Technology Development Program funded by the Ministry of Trade, Industry and Energy (Grant No. 10083640), and by the Basic Science Research Capacity Enhancement Project (National Research Facilities and Equipment Center) through the Korea Basic Science Institute funded by the Ministry of Education (Grant No. 2019R1A6C1010047), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Ho Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pi, JH., Lee, GE. & Kim, IH. Thermal Stability, Mechanical Properties and Thermoelectric Performance of Cu11TrSb4S13 (Tr = Mn, Fe, Co, Ni, Cu, and Zn). J. Electron. Mater. 49, 2710–2718 (2020). https://doi.org/10.1007/s11664-019-07570-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07570-3

Keywords

Navigation