Skip to main content

Advertisement

Log in

Construction of 2D Bi2S3/CdS Nanosheet Arrays for Enhanced Photoelectrochemical Hydrogen Evolution

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

2D Bi2S3/CdS nanosheet arrays have been constructed by a simple three-step method. Firstly, BiOI nanosheet arrays have been electrochemically grown on the surface of conductive FTO substrate and then converted into Bi2S3 nanosheet arrays by ion exchange. Finally, CdS was hydrothermally deposited onto the surface of Bi2S3 nanosheet arrays to form hybrid Bi2S3/CdS nanosheet arrays. The obtained hybrid heterojunction arrays have been used as photoanodes for photoelectrochemical hydrogen evolution and showed enhanced performance and prolonged stability. The photocurrent density of the elegant Bi2S3/CdS nanosheet arrays reaches 9.48 mA/cm2 at 1.23 VRHE under an illumination of 100 mW/cm2 from AM 1.5G sun simulator, which is more than ten times higher than that of the pure Bi2S3 nanosheet arrays and the photocurrent density does not decline obviously after 4 h of continuous operation. Ultimately, a rational mechanism is proposed to elucidate the high performance and excellent stability of Bi2S3/CdS nanosheet arrays for photoelectrochemical cells.

Graphic Abstract

To obtain nanosheet arrays: Arrays of Bi2S3/CdS nanosheets on a FTO substrate are synthesized by electrodeposition, ion exchange and hydrothermal process. The Bi2S3/CdS nanosheet photoanodes show better photoactive and photostability compared to bare Bi2S3 (CdS) nanosheets for photoelectrochemical splitting of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.N. Ferreira, T.M. Iverson, M. Karim, B. James, and I. So, Science 303, 1831 (2004).

    Article  Google Scholar 

  2. L. Gibson, E.N. Wilman, and W.F. Laurance, Trends Ecol. Evol. 32, 12 (2017).

    Article  Google Scholar 

  3. H. Wang, Y. Yang, and L. Guo, Adv. Energy Mater 7, 1601709 (2016).

    Article  Google Scholar 

  4. S.Z. Wei, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov, and T.F. Jaramillo, Science 355, eaad4998 (2017).

    Article  Google Scholar 

  5. M. Zhu, P. Chen, and M. Liu, ACS Nano 5, 4529 (2011).

    Article  Google Scholar 

  6. Y. Yin, N. Ma, J. Xue, G. Wang, S. Liu, H. Li, and P. Guo, Langmuir 35, 787 (2019).

    Article  Google Scholar 

  7. Y. Li, M. Yang, Z. Tian, N. Luo, Y. Li, H. Zhang, A. Zhou, and S. Xiong, Front. Chem. 7, 334 (2019).

    Article  Google Scholar 

  8. H. Wang, P. Hu, J. Yang, G. Gong, L. Guo, and X. Chen, Adv. Mater. 27, 2348 (2015).

    Article  Google Scholar 

  9. C. Pan, X. Jing, Y. Wang, L. Di, and Y. Zhu, Adv. Funct. Mater. 22, 1518 (2012).

    Article  Google Scholar 

  10. Y. Li, J. Feng, H. Li, X. Wei, R. Wang, and A. Zhou, Int. J. Hydrog. Energ. 41, 4096 (2016).

    Article  Google Scholar 

  11. P. Zhang, J. Zhang, and J. Gong, Chem. Soc. Rev. 43, 4395 (2014).

    Article  Google Scholar 

  12. A. Fujishima and K. Honda, Nature 238, 37 (1972).

    Article  Google Scholar 

  13. X. Chen, S. Shen, L. Guo, and S. Samuel, Chem. Rev. 110, 6503 (2010).

    Article  Google Scholar 

  14. M. Marandi, E. Rahmani, and F. Ahangarani, J. Electron. Mater. 46, 6769 (2017).

    Article  Google Scholar 

  15. P. Chen, Z. Liu, X. Geng, J. Wang, M. Zhang, and J. Liu, J. Electron. Mater. 46, 1 (2016).

    Google Scholar 

  16. P.K. Sarswat, N. Deka, S. Rao, L. Free, and G. Kumar, J. Electron. Mater. 46, 1 (2017).

    Article  Google Scholar 

  17. D.J. Desale, S. Shaikh, A. Ghosh, R. Birajadar, F. Siddiqui, A. Ghule, and R.B. Sharma, Compos. Part B 43, 1095 (2012).

    Article  Google Scholar 

  18. S. Misra and H.C. Padhi, J. Appl. Phys. 75, 4576 (1994).

    Article  Google Scholar 

  19. T. Cao, Y. Li, C. Wang, Z. Zhang, and Y. Liu, J. Mater. Chem. 21, 6922 (2011).

    Article  Google Scholar 

  20. K. Lv, Q. Xiang, and J Yu, Appl. Catal. B Environ. 104, 275 (2011).

    Article  Google Scholar 

  21. H. Zhao, Z. Dai, X. Xu, J. Pan, and J. Hu, ACS Appl. Mater. Inter. 10, 23074 (2018).

    Article  Google Scholar 

  22. Y. Shi, Y. Li, X. Wei, J. Feng, and A. Zhou, J. Electron. Mater. 46, 6878 (2017).

    Article  Google Scholar 

  23. H. Li, Y. Gao, Y. Zhou, F. Fan, Q. Han, Q. Xu, X. Wang, M. Xiao, C. Li, and Z. Zou, Nano Lett. 16, 5547 (2016).

    Article  Google Scholar 

  24. Y. Li, R. Wang, H. Li, X. Wei, J. Feng, K. Liu, Y. Dang, and A. Zhou, J. Phys. Chem. C 119, 20283 (2015).

    Article  Google Scholar 

  25. Y. Li, X. Wei, B. Zhu, H. Wang, Y. Tang, and T.C. Sum, Nanoscale 8, 11284 (2016).

    Article  Google Scholar 

  26. J.R. Maiolo, B.M. Kayes, M.A. Filler, M.C. Putnam, M.D. Kelzenberg, H.A. Atwater, and N.S. Lewis, J. Am. Chem. Soc. 129, 12346 (2007).

    Article  Google Scholar 

  27. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15, 353 (2010).

    Article  Google Scholar 

  28. C. Liu, Y. Yang, W. Li, J. Li, Y. Li, and Q. Chen, Int. J. Hydrog. Energ. 41, 5878 (2016).

    Article  Google Scholar 

  29. L. Li, N. Sun, Y. Huang, Q. Yao, N. Zhao, J. Gao, M. Li, H. Zhou, and L. Qi, Adv. Funct. Mater. 18, 1194 (2010).

    Article  Google Scholar 

  30. R. Xing, D. Li, C. An, L. Zhang, Q. Li, and S. Liu, J. Nanosci. Nanotechnol. 12, 8029 (2012).

    Article  Google Scholar 

  31. A.A. Tahir, M.A. Ehsan, M. Mazhar, K.G. Wijayantha, M. Zeller, and A.D. Hunter, Chem. Mater. 22, 5084 (2010).

    Article  Google Scholar 

  32. C. Ludovico, M. Reihaneh, P. Brien, M. Andrea, P. Srebri, N. Kherani, and G. Ozin, Angew. Chem. 39, 20070534 (2010).

    Google Scholar 

  33. X. Wang, J. Xie, and C. Li, J. Mater. Chem. A 3, 1235 (2014).

    Article  Google Scholar 

  34. J. Huang, H. Zhang, X. Zhou, and X. Zhong, Mater. Chem. Phys. 138, 755 (2013).

    Article  Google Scholar 

  35. B. Weng, X. Zhang, N. Zhang, Z.R. Tang, and Y.J. Xu, Langmuir 31, 4314 (2015).

    Article  Google Scholar 

  36. S. Luo, F. Qin, Y. Ming, H. Zhao, Y. Liu, and R. Chen, J. Hazard. Mater. 340, 253 (2017).

    Article  Google Scholar 

  37. L. Hao, G. Chen, Y. Yu, Y. Zhou, Z. Han, and Y. Liu, Int. J. Hydrog. Energ. 39, 14479 (2014).

    Article  Google Scholar 

  38. A. Jana, P. Hazra, M. Hazra, and J. Datta, Mater. Chem. Phys. 183, 173 (2016).

    Article  Google Scholar 

  39. P. Li, X. Zhang, C. Hou, Y. Chen, and T. He, Appl. Catal. B Environ. 238, 656 (2018).

    Article  Google Scholar 

  40. H. He, S.P. Berglund, P. Xiao, W.D. Chemelewski, Y. Zhang, and C.B. Mullins, J. Mater. Chem. A. 1, 12826 (2013).

    Article  Google Scholar 

  41. A. Helal, F.A. Harraz, A.A. Ismail, T.M. Sami, and I.A. Ibrahim, Appl. Catal. B Environ. 213, 18 (2017).

    Article  Google Scholar 

  42. S.U. Shaikh, F.Y. Siddiqui, F. Singh, P.K. Kulriya, D.M. Phase, and R. Sharma, Mater. Chem. Phys. 169, 6 (2016).

    Article  Google Scholar 

  43. W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, and L.M. Peng, J. Am. Chem. Soc. 130, 11240 (2009).

    Google Scholar 

  44. A.B. Wong, S. Brittman, Y. Yu, N.P. Dasgupta, and P. Yang, Nano Lett. 15, 4096 (2015).

    Article  Google Scholar 

  45. Y. Li, X. Wei, H. Li, R. Wang, J. Feng, H. Yun, and A. Zhou, RSC Adv. 5, 14074 (2015).

    Article  Google Scholar 

  46. Y. Yan, Z. Zhou, W. Li, Y. Zhu, Y. Cheng, F. Zhao, and J. Zhou, RSC Adv. 4, 38558 (2014).

    Article  Google Scholar 

  47. I.M. Kobasa and G.P. Tarasenko, Theor. Exp. Chem. 38, 255 (2002).

    Article  Google Scholar 

  48. K.T. Woo and K.S. Choi, Science 343, 990 (2014).

    Article  Google Scholar 

  49. F. Zhen, Y. Liu, Y. Fan, Y. Ni, X. Wei, K. Tang, J. Shen, and C. Yuan, J. Phys. Chem. C 115, 281 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (No. 51674194, 51074122) and the financial support from Beijing National Laboratory for Molecular Sciences (BNLMS201825) and the ACS Key Laboratory of Colloids, Interfaces and Thermodynamics. We also thank Prof. Kaiqiang Liu and Mr. Xiangyang Yan (School of Chemistry and Chemical Engineering, Shaanxi Normal University) for their technical support in TEM and XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuangang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 929 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Shi, Y., Li, Y. et al. Construction of 2D Bi2S3/CdS Nanosheet Arrays for Enhanced Photoelectrochemical Hydrogen Evolution. J. Electron. Mater. 48, 6397–6405 (2019). https://doi.org/10.1007/s11664-019-07447-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07447-5

Keywords

Navigation