Skip to main content
Log in

Optimization of Precursor Concentration for the Fabrication of V2O5 Nanorods and their MSM Photodetector on Silicon Substrate

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper presents the effects of precursor concentration on different properties of the V2O5 nanorods (NRs) grown by using spray pyrolysis technique. The V2O5 NRs with different precursor concentrations of VCl3 such as 0.05 M, 0.10 M, 0.15 M, and 0.20 M were prepared on the silicon (Si) substrates. The structural characteristics of NRs were investigated by using the XRD diffraction technique. The morphological and optical characteristics of V2O5 NRs were investigated by using a field emission scanning electron system and photoluminescence spectroscopy (PL), respectively. The V2O5 NRs based metal semiconductor–metal (MSM) photodetectors at different precursor concentrations were fabricated. The surface morphology results revealed the formation of dense V2O5 NRs that covered the entire substrate surface at 0.20 M precursor concentration. The PL emission spectra indicated a high intensity green emission around 525 nm (Eg = 2.36 eV) that was associated with the transitions of electrons between the bottom of the V-3d split-off level of the conduction band and the O-2p level of the valence band. The photo-response of the fabricated device was found to be maximum at 0.20 M concentration. The spectral responsivity of the device prepared with 0.20 M concentration was noted to be 0.042 A/W under 530 nm light at 3 V applied bias voltage. The response time and photosensitivity of the MSM device at 0.20 M were estimated to be 0.167 s and 8.6 × 103%, respectively. The results of this study demonstrated that V2O5 NRs with optimized precursor concentration act as a promising material for the MSM photodetector application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Yalagala, P. Sahatiya, C.S.R. Kolli, S. Khandelwal, V. Mattela, and S. Badhulika, ACS Appl. Nano Mater. 2, 937 (2019).

    Article  Google Scholar 

  2. M.S. Pawar, P.K. Bankar, M.A. More, and D.J. Late, RSC Adv. 5, 88796 (2015).

    Article  Google Scholar 

  3. T.A.-H. Abbas, J. Electron. Mater. 47, 7331 (2018).

    Article  Google Scholar 

  4. M. Abyazisani, M.M. Bagheri-Mohagheghi, and M.R. Benam, Mater. Sci. Semicond. Process. 31, 693 (2015).

    Article  Google Scholar 

  5. K. Schneider, M. Lubecka, and A. Czapla, Sens. Actuators B Chem. 236, 970 (2016).

    Article  Google Scholar 

  6. Y. Wei, J. Zhu, and G. Wang, IEEE Trans. Appl. Supercond. 24, 1 (2014).

    Article  Google Scholar 

  7. D.J. Ahirrao, K. Mohanapriya, and N. Jha, Mater. Res. Bull. 108, 73 (2018).

    Article  Google Scholar 

  8. X. Yao, G. Guo, P.-Z. Li, Z.-Z. Luo, Q. Yan, and Y. Zhao, ACS Appl. Mater. Interfaces. 9, 42438 (2017).

    Article  Google Scholar 

  9. D.M. Carrillo-Flores, M.T. Ochoa-Lara, and F. Espinosa-Magaña, Micron 52, 39 (2013).

    Article  Google Scholar 

  10. Yu Ruixiang, C. Zhang, Q. Meng, Z. Chen, H. Liu, and Z. Guo, ACS Appl. Mater. Interfaces. 5, 12394 (2013).

    Article  Google Scholar 

  11. H. Fu, X. Yang, X. Jiang, and A. Yu, in 2013 13th IEEE Conference on Nanotechnology (IEEE-NANO), p. 958 (2013).

  12. W. Yan, H. Ming, D. Wang, and C. Li, Appl. Surf. Sci. 346, 216 (2015).

    Article  Google Scholar 

  13. N.M. Abd-Alghafour, N.M. Ahmed, Z. Hassan, and M. Bououdina, Appl. Phys. A 122, 817 (2016).

    Article  Google Scholar 

  14. O. Almora, L.G. Gerling, C. Voz, R. Alcubilla, J. Puigdollers, and G. Garcia-Belmonte, Solar Energy Mater. Solar Cell 168, 221 (2017).

    Article  Google Scholar 

  15. Y. Vijayakumar, G.K. Mani, M.V. Ramana Reddy, and J.B. Balaguru Rayappan, Ceram. Int. 41, 2221 (2015).

    Article  Google Scholar 

  16. D. Vernardou, E. Spanakis, G. Kenanakis, E. Koudoumas, and N. Katsarakis, Mater. Chem. Phys. 124, 319 (2010).

    Article  Google Scholar 

  17. H.M. Zhang and W.C. Choy, IEEE Trans. Electron Devices 55, 2517 (2008).

    Article  Google Scholar 

  18. R.-S. Chen, W.-C. Wang, C.-H. Chan, H.-P. Hsu, L.-C. Tien, and Y.-J. Chen, Nanoscale Res. Lett. 8, 443 (2013).

    Article  Google Scholar 

  19. M. Sethu Raman, J. Chandrasekaran, R. Priya, M. Chavali, and R. Suresh, Mater. Sci. Semicond. Process. 41, 41497 (2016).

    Google Scholar 

  20. R. Mirzanezhad-Asl, A. Phirouznia, Ş. Altındal, Y. Badali, and Y. Azizian-Kalandaragh, Phys. B 561, 1 (2019).

    Article  Google Scholar 

  21. A. Büyükbaş-Uluşan, A. Tataroğlu, Y. Azizian-Kalandaragh, and M. Koşal, J. Mater. Sci.: Mater. Electron. 30, 1 (2019).

    Google Scholar 

  22. S. Boughdachi, Y. Badali, Y. Azizian-Kalandaragh, and Ş. Altındal, J. Electron. Mater. 47, 6945 (2018).

    Article  Google Scholar 

  23. A. Kumar, P. Singh, N. Kulkarni, and D. Kaur, Thin Solid Films 516, 912 (2008).

    Article  Google Scholar 

  24. P. Deepak Raj, S. Gupta, and M. Sridharan, Mater. Sci. Semicond. Process. 39, 426 (2015).

    Article  Google Scholar 

  25. S. Beke, S. Giorgio, L. Kőrösi, L. Nanai, and W. Marine, Thin Solid Films 516, 4659 (2008).

    Article  Google Scholar 

  26. N.K. Nandakumar and E.G. Seebauer, Thin Solid Films 519, 3663 (2011).

    Article  Google Scholar 

  27. D. Vasanth Raj, N. Ponpandian, D. Mangalaraj, and C. Viswanathan, Mater. Sci. Semicond. Process. 16, 256 (2013).

    Article  Google Scholar 

  28. C. Ban, N.A. Chernova, and M. Stanley Whittingham, Electrochem. Commun. 11, 522 (2009).

    Article  Google Scholar 

  29. N.M. Abd-Alghafour, N.M. Ahmed, Z. Hassan, S.M. Mohammad, M. Bououdina, and M.K.M. Ali, J. Mater. Sci.: Mater. Electron. 27, 4613 (2016).

    Google Scholar 

  30. A. Almoabadi, S. Badilescu, V.-V. Truong, M. Alsawafta, V. Stancovski, T. Sharma, and R. Brüning, in Photonics North (IEEE), p. 1 (2015)

  31. Y. Qin, G. Fan, K. Liu, and H. Ming, Sens. Actuat. B Chem. 190, 141 (2014).

    Article  Google Scholar 

  32. Z.S. El Mandouh and M.S. Selim, Thin Solid Films 371, 259 (2000).

    Article  Google Scholar 

  33. R.J. Deokate, C.H. Bhosale, and K.Y. Rajpure, J. Alloy. Compd. 473, L20 (2009).

    Article  Google Scholar 

  34. A.A. Mane, M.P. Suryawanshi, J.H. Kim, and A.V. Moholkar, Appl. Surf. Sci. 403, 540 (2017).

    Article  Google Scholar 

  35. N. Senthil Kumar, J. Chandrasekaran, R. Mariappan, M. Sethuraman, and M. Chavali, Superlattices Microstruct. 65, 353 (2014).

    Article  Google Scholar 

  36. M.-C. WU and C.-S. Lee, J. Solid State Chem. 182, 2285 (2009).

    Article  Google Scholar 

  37. C. Diaz-Guerra and J. Piqueras, Cryst. Growth Des. 8, 1031 (2008).

    Article  Google Scholar 

  38. W. Avansi, L.J.Q. Maia, C. Ribeiro, E.R. Leite, and V.R. Mastelaro, J. Nanopart. Res. 13, 4937 (2011).

    Article  Google Scholar 

  39. J. Piprek, Semiconductor optoelectronic devices: introduction to physics and simulation (Amsterdam: Elsevier Science, 2013).

    Google Scholar 

  40. A. Venkatesan, N.R.K. Chandar, A. Kandasamy, M.K. Chinnu, K.N. Marimuthu, R.M. Kumar, and R. Jayavel, RSC Adv. 5, 21778 (2015).

    Article  Google Scholar 

  41. W. Zhang, J. Zhao, Z. Liu, Z. Liu, and F. Zhuxi, Appl. Surf. Sci. 256, 4423 (2010).

    Article  Google Scholar 

  42. J. Lu, H. Ming, Y. Tian, C. Guo, C. Wang, S. Guo, and Q. Liu, Opt. Express 7, 6974 (2012).

    Article  Google Scholar 

  43. N.M. Abd-Alghafour, Vanadium pentoxide nanorods deposited by spray pyrolysis method for photodetector and pH sensor applications. Ph.D. thesis, Universiti Sains Malaysis (2018).

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Iraqi Ministry of Higher Education and Scientific Research, University of Al-Anbar and Malaysia Ministry of Education (MOE) under LRGS (Wide Band Gap Semiconductor), Project No. 203/CINOR/6720013.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. Abd-Alghafour or Z. Hassan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Alghafour, N.M., Mohammed, S.M., Ahmed, N.M. et al. Optimization of Precursor Concentration for the Fabrication of V2O5 Nanorods and their MSM Photodetector on Silicon Substrate. J. Electron. Mater. 48, 5640–5649 (2019). https://doi.org/10.1007/s11664-019-07390-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07390-5

Keywords

Navigation