Skip to main content
Log in

Electronic Transport Characteristics of a Graphene Nanoribbon Based pn Device

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electronic transport in terms of its parameters, such as electron effective mass, electron mobility, deformation potential (DP), electron Fermi velocity and energy band gap, is investigated for a boron and nitrogen codoped armchair graphene nanoribbon (aGNR) based pn device via determination of electron interaction with acoustical phonons by deformation potential (DP) scattering mechanism and piezoelectric (PZ) scattering mechanism under the impact of finite electric field at low temperature regime. The variation of acoustical deformation potential (ADP) with electron Fermi velocity for a particular temperature has been studied. The dependence of electron mobility on the doping concentration as well as electron effective mass and lattice temperature have been observed for a boron and nitrogen doped graphene nanoribbon pn device for its nanoelectronic and photovoltaic applications. The current-voltage characteristics have also been studied for the pn device under the forward biased condition. The net electron mobility (ADP + PZ) for the region of boron doped aGNR is observed much higher in comparison with the region of nitrogen-doped graphene for a particular temperature. Moreover, it has also been observed that the electron mobility increases with boron doping in the P-region, but decreases with an increase in nitrogen concentration in the N-region of the armchair graphene nanoribbon based pn device. The band gap shows considerable variation with impurity concentration for the width of nanoribbons less than 40 nm with respect to pristine graphene, whereas for that with widths of more than 50 nm to up to 100 nm there is no impact of concentration on the band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Geim, Science 324, 1530 (2009).

    Article  Google Scholar 

  2. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  Google Scholar 

  3. D. Cooper, B. Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, and V. Yu, ISRN Condens. Matter Phys. (2012). https://doi.org/10.5402/2012/501686.

    Google Scholar 

  4. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Noveselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  Google Scholar 

  5. K.I. Bolotin, K.J. Sikes, J. Hone, H.L. Stormer, and P. Kim, Phys. Rev. Lett. 101, 096802 (2008).

    Article  Google Scholar 

  6. L.A. Falkovsky and J. Phys, Conf. Ser. 129, 012004 (2008).

    Article  Google Scholar 

  7. M. Gullans, D.E. Chang, F.H.L. Koppens, F.J. García de Abajo, and M.D. Lukin, Phys. Rev. Lett. 111, 247401 (2013).

    Article  Google Scholar 

  8. Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, and R.B. Kaner, Chem. Soc. Rev. 44, 3639 (2015).

    Article  Google Scholar 

  9. C. Zhang, A. Li, Y. Zhao, S. Bai, and Y. Zhang, Compos. B 135, 201 (2018).

    Article  Google Scholar 

  10. F. Bonaccorso, Z. Sun, T. Hasan, and A.C. Ferrari, Nat. Photon. 4, 611 (2010).

    Article  Google Scholar 

  11. A. Alwani, A. Chumakov, O. Shinkarenko, I. Gorbachev, M. Pozharov, S. Venig, and E. Glukhovskoy, Appl. Surf. Sci. 424, 222 (2017).

    Article  Google Scholar 

  12. C. Yan, J.H. Cho, and J.-H. Ahn, Nanoscale 4, 4870 (2012).

    Article  Google Scholar 

  13. D. Tiwari and K. Sivasankaran, Int. J. Nanosci. 17, 1760016 (2018).

    Article  Google Scholar 

  14. N. Ruecha, R. Rangkupan, N. Rodthongkum, and O. Chailapakul, Biosens. Bioelectron. 52, 13 (2014).

    Article  Google Scholar 

  15. L. Wang, A. Wu, and G. Wei, Analyst 143, 1526 (2018).

    Article  Google Scholar 

  16. S. Abadal, I.L. Latser, A. Mestres, and H. Lee, IEEE Trans. Commun. 63, 1470 (2015).

    Article  Google Scholar 

  17. G. Bansal, A. Marwaha, A. Singh, R. Bala, and S. Marwaha, Curr. Nanosci. 14, 290 (2018).

    Article  Google Scholar 

  18. T.C. Karni, Q. Qing, Q. Li, Y. Fang, and C.M. Lieber, Nano Lett. 10, 1098 (2010).

    Article  Google Scholar 

  19. M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, and R.S. Ruoff, Nano Lett. 8, 3498 (2008).

    Article  Google Scholar 

  20. X. Wang, L. Zhi, N. Tsao, Z. Tomovic, J. Li, and K. Mullen, Angewandte Chemie Int. Ed. 47, 2990 (2008).

    Article  Google Scholar 

  21. E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, and I. Honma, Nano Lett. 9, 2255 (2009).

    Article  Google Scholar 

  22. A. Lherbie, X. Blase, Y. Niquet, F. Triozon, and S. Roche, Phys. Rev. Lett. 101, 036808 (2008).

    Article  Google Scholar 

  23. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, and P.M. Ajayan, Nat. Mater. 9, 430 (2010).

    Article  Google Scholar 

  24. P. Rani and V.K. Jindal, RSC Adv. 3, 802 (2013).

    Article  Google Scholar 

  25. Q. Peng, A. R. Zamiri, W. Ji, S. De, (2012). https://arxiv.org/abs/1107.1448v2.

  26. S. Lin, N. Tran, M. Lin (2018). https://arxiv.org/abs/1801.07285.

  27. A. Pandya and P.K. Jha, J. Electron. Mater. 46, 2340 (2017).

    Article  Google Scholar 

  28. B. Thakur, G. Zhou, J. Chang, H. Pu, B. Jin, X. Sui, X. Yuan, C. Yang, M. Magruder, and J. Chen, Biosens. Bioelectron. 110, 16 (2018).

    Article  Google Scholar 

  29. I. Kuznetsova, V. Anisimkin, V. Kolesov, V. Kashin, V. Osipenko, S. Gubin, S. Tkachev, E. Verona, S. Sun, and A. Kuznetsova, Sezawa Sensor Actuat. B-Chem. 272, 236 (2018).

    Article  Google Scholar 

  30. L. Putri, B. Ng, W. Ong, H. Lee, W. Chang, and S. Chai, J. Mater. Chem. A 7, 3181 (2018).

    Article  Google Scholar 

  31. W. Chen, L. Xu, Y. Tian, H. Li, and K. Wang, Carbon 137, 458 (2018).

    Article  Google Scholar 

  32. L. Qin, L. Wang, X. Yang, R. Ding, Z. Zheng, X. Chen, and B. Lv, J. Catal. 359, 242 (2018).

    Article  Google Scholar 

  33. B. Huang, Phys. Lett. A 375, 845 (2011).

    Article  Google Scholar 

  34. D. Efetov and P. Kim, Phys. Rev. Lett. 105, 256805 (2010).

    Article  Google Scholar 

  35. J. Halle, N. Neel, M. Fonin, M. Brandbyge, and J. Kroger, Nano Lett. (2018). https://doi.org/10.1021/acs.nanolett.8b02295.

    Google Scholar 

  36. G. Eliel, M. Moutinho, A. Gadelha, A. Righi, L. Campos, H. Ribeiro, P.-W. Chiu, K. Watanabe, T. Taniguchi, P. Puech, M. Paillet, T. Michel, P. Venezuela, and M.A. Pimenta, Nat. Commun. 9, 1221 (2018).

    Article  Google Scholar 

  37. A. Pandya and P.K. Jha, Int. J. Nanosci. 17, 18500010 (2018).

    Google Scholar 

  38. D. Quang, V. Tuoc, and T. Huan, Phys. Rev. B 68, 195316 (2003).

    Article  Google Scholar 

  39. K. Kaasbjerg, K.S. Thygesen, and K.W. Jacobsen, Phys. Rev. B 85, 165440 (2012).

    Article  Google Scholar 

  40. K. Kaasbjerg, K.S. Thygesen, and A. Jauho, Phys. Rev. B 87, 235312 (2013).

    Article  Google Scholar 

  41. E.H. Hwang and S.D. Sarma, Phys. Rev. B 77, 115449 (2008).

    Article  Google Scholar 

  42. M. Lundstrom, Fundamentals of Carrier Transport (Cambridge: Cambridge University. Press, 2000), pp. 56–89.

    Book  Google Scholar 

  43. A. Pandya, S. Shinde, and P. Jha, Indian J. Pure Ap. Phy. 47, 523 (2009).

    Google Scholar 

  44. R. Gupta, Tr. J. Phys. 23, 551 (1999).

    Google Scholar 

  45. R. Gupta, N. Balkan, and B. Ridley, Phys. Rev. B 46, 7745 (1992).

    Article  Google Scholar 

  46. S. Singhal, A. Saxena, and S. Dasgupta, Pramana 69, 687 (2007).

    Article  Google Scholar 

  47. U. Bockelmann and G. Bastard, Phys. Rev. B 42, 8947 (1990).

    Article  Google Scholar 

  48. B.K. Ridley, J. Phys. C: Solid State Phys. 15, 5899 (1982).

    Article  Google Scholar 

  49. V. Ariel, A. Natan (2012). arXiv:1206.6100v2 [Physics.gen-ph]

  50. B.K. Ridley, B.E. Foutz, and L.F. Eastman, Phys. Rev. B 61, 16862 (2000).

    Article  Google Scholar 

  51. V. Mitin, V. Kochelap, and M. Stroscio, Quantum heterostructures (Cambridge: Cambridge university Press, 1999), pp. 394–412.

    Google Scholar 

  52. P.L. McEuen, M.S. Fuhrer, and H. Park, IEEE Trans. Nanotech. 1, 78 (2002).

    Article  Google Scholar 

  53. P. Avouris, J. Appenzeller, R. Martel, and S.J. Wind, IEEE Proc. 91, 1772 (2003).

    Article  Google Scholar 

  54. S. Mukherjee and T.P. Kaloni, J. Nanopart. Res. 14, 1059 (2012).

    Article  Google Scholar 

  55. J. Gosciniak and D.T.H. Tan, Sci. Rep. 3, 1897 (2013).

    Article  Google Scholar 

  56. J.S. Bunch, A.M. Van Der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, and P.L. McEuen, Science 315, 490 (2007).

    Article  Google Scholar 

  57. K.S. Bhargavi and S.S. Kubakaddi, Physica E 52, 116 (2013).

    Article  Google Scholar 

  58. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature 438, 197 (2005).

    Article  Google Scholar 

  59. C. Jang, S. Adam, J.H. Chen, E.D. Williams, S. Das-Sarma, and M.S. Fuhrer, Phys. Rev. Lett. 101, 146805 (2008).

    Article  Google Scholar 

  60. S. Bruzzone and G. Fiori, Appl. Phys. Lett. 99, 222108 (2011).

    Article  Google Scholar 

  61. Y.W. Son, M.L. Cohen, and S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006).

    Article  Google Scholar 

  62. Y. Li, C.H. Park, Y.W. Son, M.L. Cohen, and S.G. Louie, Phys. Rev. Lett. 99, 186801 (2007).

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the SERB Govt. of India. One of us Ankur Pandya acknowledges the Institute of Technology, Nirma University for providing the basic facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Pandya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandya, A., Jha, P.K. Electronic Transport Characteristics of a Graphene Nanoribbon Based pn Device. J. Electron. Mater. 48, 5702–5709 (2019). https://doi.org/10.1007/s11664-019-07388-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07388-z

Keywords

Navigation