Skip to main content
Log in

First-Principles Study of Electronic Structure and Optical Properties of La-Doped AlN

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

As a wide-bandgap semiconductor material with small dielectric constant and good thermal stability, aluminium nitride (AlN) can theoretically emit light in the deep ultraviolet wavelength region, so it is important in expanding the response of AlN in the visible region. In order to study the influences of La doping on the photoelectric properties of wurtzite AlN crystal, the first-principle plane-wave pseudopotential method and generalized gradient approximation were used to study the lattice constants, electronic structure and optical properties of undoped and La-doped AlN. The calculation results indicate that the intrinsic AlN is a direct-bandgap semiconductor material which both conduction band bottom and valence band top being at the G point, but La-doped AlN forms an indirect-bandgap semiconductor in which the conduction band bottom is at the G point and the valence band top is at the F point. The peak of the density of states is reduced near Fermi energy, and the electronic localization features are significantly diminished. The La doping makes the forbidden band width of AlN narrow, which reduces the photon energy needed for the electron transition, and shows a red shift phenomenon, which expands the influence on visible light. Therefore, this provides a theoretical basis for the study of the photoelectric properties of rare-earth-metal La-doped AlN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.E. Foutz, S.K. O’Leary, and M.S. Shur, J. Appl. Phys. 85, 11 (1999).

    Article  Google Scholar 

  2. A.F. Wright, J. Appl. Phys. 82, 6 (1997).

    Google Scholar 

  3. M.L. Nakarmi, N. Nepal, and C. Ugolini, Appy. Phys. Lett 89, 15 (2006).

    Google Scholar 

  4. R. Pandey, A. Sutjianto, and M. Seel, J. Electron. Mater. 8, 8 (1993).

    Google Scholar 

  5. Y. Chen, Z. Zhang, and H. Jiang, J. Mater. Chem. C 10, 15 (2018).

    Google Scholar 

  6. C. Liu, Y.K. Ooi, and S.M. Islam, Appl. Phys. Lett. 112, 1 (2018).

    Google Scholar 

  7. I.K. Battisha, A.E. Beyally, S.A.E. Mongy, and J. Sol-gel, Sci. Technol. 41, 2 (2007).

    Google Scholar 

  8. S. Karimi, I.M. Reaney, and Y. Han, J. Mater. Sci. 44, 19 (2009).

    Article  Google Scholar 

  9. Y. Karabulut, M. Ayvacıklı, and A. Canimoglu, Spectrosc. Lett. 47, 8 (2014).

    Google Scholar 

  10. T. Shiosaki, T. Yamamoto, and T. Oda, Appl. Phys. Lett. 36, 8 (2008).

    Google Scholar 

  11. M. Gautier, J.P. Duraud, and C.L. Gressus, J. Appl. Phys. 61, 2 (1987).

    Article  Google Scholar 

  12. M.L. Nakarmi, N. Nepal, and C. Ugolini, Appl. Phys. Lett. 89, 15 (2006).

    Article  Google Scholar 

  13. K. Lorenz, E. Alves, and F. Gloux, J. Appl. Phys. 107, 2 (2010).

    Article  Google Scholar 

  14. S.G. Yang, A.B. Pakhomov, and S.T. Hung, Appl. Phys. Lett. 81, 13 (2002).

    Article  Google Scholar 

  15. T. Zakrzewski and P. Boguslawski, J. Alloys Compd. 664, 20 (2016).

    Article  Google Scholar 

  16. D. Almeida and D.B. Mota, Eur. Phys. J. B 85, 1 (2012).

    Article  Google Scholar 

  17. C. Shi, H. Qin, and Y. Zhang, J. Appl. Phys. 115, 5 (2014).

    Article  Google Scholar 

  18. J.D. Mackenzie, C.R. Abernathy, and S.J. Pearton, Appl. Phys. Lett. 69, 14 (1996).

    Article  Google Scholar 

  19. T. Pavloudis, V. Brien, and J. Kioseoglou, Comput. Mater. Sci 138, 128 (2017).

    Article  Google Scholar 

  20. Z.Y. Jiao, S.H. Ma, and J.F. Yang, J. Solid. State. Sci. 13, 2 (2011).

    Article  Google Scholar 

  21. M.D. Segall, P.J.D. Lindan, and M.J. Probert, J. Phys. Condens. Mat. 14, 11 (2002).

    Google Scholar 

  22. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 18 (1996).

    Article  Google Scholar 

  23. Y. Liu, Y.H. Lin, and J. Lan, J. Electron. Mater. 40, 5 (2011).

    Google Scholar 

  24. J.G. Lu, Z.Z. Ye, and Y.J. Zeng, J. Appl. Phys. 100, 7 (2006).

    Google Scholar 

  25. B.N. Pantha, A. Sedhain, and J. Li, Appl. Phys. Lett. 96, 13 (2010).

    Google Scholar 

  26. S. Saib and N. Bouarissa, Eur. Phys. J. B 47, 3 (2005).

    Article  Google Scholar 

  27. M. Strassburg, J. Senawiratne, and N. Dietz, J. Appl. Phys. 96, 10 (2004).

    Article  Google Scholar 

  28. Y.V. Shaldin and S. Matyjasik, Semiconductors+ 45, 9 (2011).

    Google Scholar 

  29. H. Sun, W. Fan, and Y. Li, J. Solid State Chem. 183, 12 (2010).

    Google Scholar 

  30. A. Dar and A. Majid, Eur. Phys. J. Appl. Phys. 71, 1 (2015).

    Article  Google Scholar 

  31. X. Luo, X. Guo, and Z. Liu, Phys. Rev. B 76, 9 (2007).

    Google Scholar 

  32. S. Saha, T.P. Sinha, and A. Mookerjee, Phys. Rev. B 62, 13 (2000).

    Article  Google Scholar 

  33. L. Lallemant, N. Roussel, and G. Fantozzi, J. Eur. Ceram. Soc. 34, 5 (2014).

    Google Scholar 

  34. P. Srivastava, B.J. Nagare, and D.G. Kanhere, J. Appl. Phys. 114, 10 (2013).

    Google Scholar 

  35. N.K. Divya and P.P. Pradyumnan, J. Mater. Sci. Mater. El. 28, 2 (2017).

    Article  Google Scholar 

  36. H.M. Huang, R.S. Chen, and H.Y. Chen, Appl. Phys. Lett. 96, 6 (2010).

    Google Scholar 

  37. H.Y. He, J.F. Huang, and J. Fei, J. Mater. Sci. Mater. El. 26, 2 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 61264004), High-level Creative Talent Training Program in Guizhou Province of China (Grant No. [2015]4015), and the Foundation for Sci-tech Activities for the Overseas Chinese Returnees in Guizhou Province (Grant No. [2018]09). Thanks to Sun Tao at the Cloud Computing Center of Guizhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingquan Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Xiao, Q., Xie, Q. et al. First-Principles Study of Electronic Structure and Optical Properties of La-Doped AlN. J. Electron. Mater. 48, 5135–5142 (2019). https://doi.org/10.1007/s11664-019-07320-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07320-5

Keywords

Navigation