Skip to main content
Log in

Improved Microwave Dielectric Properties of LiNb0.6Ti0.5O3 Ceramics with Zr Substitutions

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The influences of Zr4+ substituted for Ti4+ on the microwave dielectric properties of LiNb0.6Ti(0.5−x)ZrxO3 (0.00 ≤ x ≤ 0.14) ceramics prepared via conventional solid-state method have been studied and are discussed. X-ray diffraction analysis indicated that the Li1.075Nb0.625Ti0.45O3 phase was formed, while a small trace of ZrO2 was observed when x reaches 0.08. With the increase of Zr4+ substitution, variation of the dielectric constant (εr) was dominated by phase constitutions and densification. The quality factor (Q × f) showed a continuously decrease tendency, which was attributed to the increasing number of grain boundaries and the content of the secondary phase. The temperature coefficient of the resonant frequency (τf) value shifted from 30.60 ppm/°C to − 14.50 ppm/°C. Temperature-stable microwave dielectric ceramics was obtained with εr = 63.14, Q × f = 4626 GHz and τf =1.38 ppm/°C, at x = 0.10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Borisevich and P.K. Davies, J. Eur. Ceram. Soc. 21, 1719 (2001).

    Article  Google Scholar 

  2. Q. Zeng, W. Li, J.L. Shi, X.L. Dong, and J.K. Guo, J. Am. Ceram. Soc. 91, 644 (2008).

    Article  Google Scholar 

  3. H. Yang, S. Zhang, H. Yang, X. Zhang, and E. Li, Inorg. Chem. 57, 8264 (2018).

    Article  Google Scholar 

  4. E. Li, Y. Chen, J. Xiong, M. Zou, and B. Tang, J. Mater. Sci. Mater. Electron. 27, 8428 (2016).

    Article  Google Scholar 

  5. M.T. Sebastian and H. Jantunen, Int. Mater. Rev. 53, 57 (2013).

    Article  Google Scholar 

  6. D. Zhou, L.X. Pang, D.W. Wang, and I.M. Reaney, J. Mater. Chem. C 6, 9290 (2018).

    Article  Google Scholar 

  7. J.Y. Ha, J.W. Choi, S.J. Yoon, D.J. Choi, K.H. Yoon, and H.J. Kim, J. Eur. Ceram. Soc. 23, 2413 (2003).

    Article  Google Scholar 

  8. E. Li, P. Zhang, S. Duan, J. Wang, Y. Yuan, and B. Tang, J. Alloys Compd. 647, 866 (2015).

    Article  Google Scholar 

  9. M.E.V. Castrejón, A.A. Piña, R. Valenzuela, and A.R. West, J. Solid State Chem. 71, 103 (1987).

    Article  Google Scholar 

  10. S. Roth, Phase Diagrams for Ceramists, American Ceramic Society1983.

  11. A.Y. Borisevich and P.K. Davies, J. Am. Ceram. Soc. 85, 573 (2004).

    Article  Google Scholar 

  12. A.Y. Borisevich and P.K. Davies, J. Am. Ceram. Soc. 87, 1047 (2004).

    Article  Google Scholar 

  13. D.H. Kang, K.C. Nam, and H.J. Cha, J. Eur. Ceram. Soc. 26, 2117 (2006).

    Article  Google Scholar 

  14. Q. Zeng, W. Li, J.L. Shi, and J.K. Guo, J. Am. Ceram. Soc. 89, 3305 (2006).

    Article  Google Scholar 

  15. Q. Zeng, W. Li, J.L. Shi, and J.K. Guo, Mater. Lett. 60, 3203 (2006).

    Article  Google Scholar 

  16. Q. Zeng, W. Li, J. L. Shi and J. K. Guo, physica status solidi (a), 203 R91 (2006).

  17. Q. Zeng, W. Li, J.L. Shi, J.K. Guo, M.W. Zuo, and W.J. Wu, J. Am. Ceram. Soc. 89, 1733 (2006).

    Article  Google Scholar 

  18. Q. Zeng, W. Li, J.L. Shi, X.L. Dong, and J.K. Guo, J. Am. Ceram. Soc. 90, 2262 (2007).

    Article  Google Scholar 

  19. S. Li, Q. Zhang, H. Yang, and D. Zou, Ceram. Int. 35, 421 (2009).

    Article  Google Scholar 

  20. S. Li, Y. Geng, T. Zhao, Q. Zhang, and H. Yang, Proc. Eng. 27, 1328 (2012).

    Article  Google Scholar 

  21. S. Li, Q. Zhang, T. Zhao, and H. Yang, Prog. Nat. Sci. 23, 152 (2013).

    Article  Google Scholar 

  22. D. Zhou, L.X. Pang, J. Guo, Z.M. Qi, T. Shao, X. Yao, and C.A. Randall, J. Mater. Chem. 22, 21412 (2012).

    Article  Google Scholar 

  23. H.B. Hong, D.W. Kim, and K.S. Hong, Jpn. J. Appl. Phys. 42, 5172 (2003).

    Article  Google Scholar 

  24. B. Shen, X. Yao, L. Kang, and D. Peng, Ceram. Int. 30, 1203 (2004).

    Article  Google Scholar 

  25. J.B. Lim, K.H. Cho, S. Nahm, J.H. Paik, and J.H. Kim, Mater. Res. Bull. 41, 1868 (2006).

    Article  Google Scholar 

  26. J.H. Park, Y.J. Choi, J.H. Park, and J.G. Park, Mater. Chem. Phys. 88, 308 (2004).

    Article  Google Scholar 

  27. E. Li, H. Yang, H. Yang, and S. Zhang, Ceram. Int. 44, 8072 (2018).

    Article  Google Scholar 

  28. L.X. Pang, H. Wang, D. Zhou, and X. Yao, J. Mater. Sci. Mater. Electron. 21, 1285 (2010).

    Article  Google Scholar 

  29. D. Zhou, D. Guo, W.B. Li, L.X. Pang, X. Yao, D.W. Wang, and I.M. Reaney, J. Mater. Chem. C 4, 5357 (2016).

    Article  Google Scholar 

  30. Y. Chen, E. Li, M. Zou, H. He, and S. Zhang, J. Mater. Sci. Mater. Electron. 28, 13132 (2017).

    Article  Google Scholar 

  31. D. Zhou, L.X. Pang, D.W. Wang, C. Li, B.B. Jin, and I.M. Reaney, J. Mater. Chem. C 5, 10094 (2017).

    Article  Google Scholar 

  32. L.X. Pang, H. Wang, D. Zhou, and W.H. Liu, Mater. Chem. Phys. 123, 727 (2010).

    Article  Google Scholar 

  33. E. Li, X. Yang, H. Yang, H. Yang, H. Sun, Y. Yuan, and S. Zhang, Ceram. Int. 28, 5418 (2018).

  34. R.D. Shannon, Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography, 32 751 (1976).

  35. J.B. Mann, T.L. Meek, E.T. Knight, J.F. Capitani, and L.C. Allen, J. Am. Chem. Soc. 122, 5132 (2000).

    Article  Google Scholar 

  36. Y. Li, X. Lu, Y. Zhang, Y. Zou, L. Wang, H. Zhu, Z. Fu, and Q. Zhang, Ceram. Int. 43, 11516 (2017).

    Article  Google Scholar 

  37. Z. Wang, M. Cao, Z. Yao, Z. Song, G. Li, W. Hu, H. Hao, and H. Liu, Ceram. Int. 40, 14127 (2014).

    Article  Google Scholar 

  38. W.Y. Lin, R.F. Speyer, W.S. Hackenberger, and T.R. Shrout, J. Am. Ceram. Soc. 82, 1207 (1999).

    Article  Google Scholar 

  39. L.X. Pang, H. Wang, D. Zhou, Y.H. Chen, and X. Yao, Appl. Phys. A 100, 1205 (2010).

    Article  Google Scholar 

  40. Q. Zhang, Z. Li, F. Li, Z. Xu, and S. Zhang, J. Am. Ceram. Soc. 94, 4335 (2011).

    Article  Google Scholar 

  41. H. Sun, E. Li, H. Yang, H. Yang, and S. Zhang, Mater. Lett. 210, 275 (2018).

    Article  Google Scholar 

  42. R.D. Shannon, J. Appl. Phys. 73, 348 (1993).

    Article  Google Scholar 

  43. D. Vanderbilt, X. Zhao, and D. Ceresoli, Thin Solid Films 486, 125 (2005).

    Article  Google Scholar 

  44. E. Li, Y. Yang, H. Yang, Y. Yuan, and S. Zhang, J. Mater. Sci. Mater. Electron. 29, 11901 (2018).

    Article  Google Scholar 

  45. C. Huang and M. Weng, Mater. Res. Bull. 35, 1881 (2000).

    Article  Google Scholar 

  46. J. Guo, C.A. Randall, G. Zhang, D. Zhou, Y. Chen, and H. Wang, J. Mater. Chem. C 2, 7364 (2014).

    Article  Google Scholar 

  47. J. Li, L. Fang, H. Luo, J. Khaliq, Y. Tang, and C. Li, J. Eur. Ceram. Soc. 36, 243 (2016).

    Article  Google Scholar 

  48. D. Zhou, H. Wang, and X. Yao, Mater. Chem. Phys. 104, 397 (2007).

    Article  Google Scholar 

  49. M.T. Sebastian, R. Ubic, and H. Jantunen, Int. Mater. Rev. 60, 392 (2015).

    Article  Google Scholar 

  50. A.J. Bosman and E.E. Havinga, Phys. Rev. 129, 1593 (1963).

    Article  Google Scholar 

  51. H. Lee, K.S. Hong, S. Kim, and I. Kim, Mater. Res. Bull. 32, 847 (1997).

    Article  Google Scholar 

  52. S.H. Yoon, D.W. Kim, S.Y. Cho, and K.S. Hong, J. Eur. Ceram. Soc. 26, 2051 (2006).

    Article  Google Scholar 

Download references

Acknowledgment

The authors appreciate the financial support from the National Natural Science Foundation of China (No. 51872037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enzhu Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, E., Yang, X., Yang, H. et al. Improved Microwave Dielectric Properties of LiNb0.6Ti0.5O3 Ceramics with Zr Substitutions. J. Electron. Mater. 48, 5080–5087 (2019). https://doi.org/10.1007/s11664-019-07314-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07314-3

Keywords

Navigation