Skip to main content
Log in

Effect of Zn2+ doping Li2Mg3Ti0.91(Al0.5Nb0.5)0.09O6 on structures and microwave dielectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Li2Mg3Ti0.91(Al0.5Nb0.5)0.09O6-based microwave dielectric ceramics with high dielectric constant, quality-factor and temperature stability were prepared by conventional solid-state reaction method. Influence of Zn2+ dopant on structures and microwave dielectric properties of Li2Mg3Ti0.91(Al0.5Nb0.5)0.09O6 ceramics were investigated by X-ray diffraction and Raman spectroscopy. The X-ray diffraction results showed that no new phase was produced with the zinc addition before y = 0.08, above that some ZnTiO3 peaks with very low intensity appear in the low-angle region of the diffraction pattern. The results of the scanning electronic microscope confirmed that Zn2+ doping helped grains growth, reduced grain boundaries and made grains distribution uniform. All of these improvements have led to great dielectric constant (εr), superior quality factor (Q×f) and outstanding temperature coefficient of resonance frequency (τf). A microwave dielectric ceramic based on Li2Mg3Ti0.91(Al0.5Nb0.5)0.09O6 with optimum Zn2+ content sintered at optimum temperature, exhibiting better comprehensive dielectric properties: εr = 14.51, Q×f = 158,120 GHz, τf = −13.0 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No data was used for the research described in the article. The data that has been used is confidential. Data will be made available on request.

References

  1. Z.F. Fu, P. Liu, J.L. Ma, X.M. Chen, H.W. Zhang, New high Q low-fired Li2Mg3TiO6 microwave dielectric ceramics with rock salt structure. Mater. Lett. 164, 436–439 (2016)

    Article  CAS  Google Scholar 

  2. H. Xie, Microwave dielectric properties of low loss Li2(Mg0.95A0.05)3TiO6 (A = Ca2+, Ni2+, Zn2+, Mn2+) ceramics system. J. Alloys Compd. 689(25), 246–249 (2016)

    Google Scholar 

  3. Z.X. Fang, B. Tang, F. Si, S. Zhang, Temperature stable and high-Q microwave dielectric ceramics in the Li2Mg3 – xCaxTiO6 system (x = 0.00-0.18). Ceram. Int. 43(2), 1682–1687 (2017)

    Article  CAS  Google Scholar 

  4. H.L. Pan, Y.X. Mao, Y.K. Yang, Y.W. Zhang, H.T. Wu, Crystal structure, Raman spectra, infrared spectra and microwave dielectric properties of Li2Mg3Ti1 – x(Mg1/3Ta2/3)xO6 (0 ≤ x ≤ 0.2) solid solution ceramics. Mater. Res. Bull. 105, 296–305 (2018)

    Article  CAS  Google Scholar 

  5. H.L. Pan, Y.W. Zhang, H.T. Wu, Crystal structure, infrared spectroscopy and microwave dielectric properties of ultra low-loss Li2Mg3Ti0.95(Mg1/3Sb2/3)0.05O6 ceramic. Ceram. Int. 44, 3464–3468 (2018)

    Article  CAS  Google Scholar 

  6. P. Zhang, H. Xie, Y.G. Zhao, M. Xiao, Synthesis and microwave dielectric characteristics of high-Q Li2MgxTiO3 + x ceramics system. Mater. Res. Bull. 98, 160–165 (2018)

    Article  CAS  Google Scholar 

  7. F. Zhao, Z.X. Yue, Y.C. Zhang, Z.L. Gui, L.T. Li, Microstructure and microwave dielectric properties of Ca[Ti1 – x(Mg1/3Nb2/3)x]O3 ceramics. J. Eur. Ceram. Soc. 25(14), 3347–3352 (2005)

    Article  CAS  Google Scholar 

  8. J.J. Bian, X.H. Zhang, Structural evolution, grain growth kinetics and microwave dielectric properties of Li2Ti1 – x(Mg1/3Nb2/3)xO3. J. Eur. Ceram. Soc. 38(2), 599–604 (2018)

    Article  CAS  Google Scholar 

  9. G.H. Chen, H.R. Xu, C.L. Yuan, Microstructure and microwave dielectric properties of Li2Ti1 – x(Zn1/3Nb2/3)xO3 ceramics. Ceram. Int. 39(5), 4887–4892 (2013)

    Article  CAS  Google Scholar 

  10. H.T. Chen, B. Tang, P. Fan, M. Wei, S.R. Zhang, Phase evolution and microwave dielectric properties of Ca0.61Nd0.26Ti1– x(Al1/2Nb1/2)xO3 ceramics (0 ≤ x ≤ 0.2). Ceram-Silikaty. 61(1), 1–5 (2017)

    CAS  Google Scholar 

  11. T.W. Zhang, R.Z. Zuo, J. Zhang, Structure, microwave dielectric properties, and low-temperature sintering of acceptor/donor codoped Li2Ti1 – x(Al0.5Nb0.5)xO3 Ceramics. J. Am. Ceram. Soc. 99, 825–832 (2015)

    Article  Google Scholar 

  12. E.Z. Li, X. Yang, H.C. Yang, H.Y. Yang, H.B. Sun, Y. Yuan et al., Crystalstructure, microwave dielectric properties and low temperature sintering of (Al0.5Nb0.5) 4+ co-substitution for Ti4+ of LiNb0.6Ti0.5O3 ceramics. Ceram. Int. 45, 5418–5424 (2019)

    Article  CAS  Google Scholar 

  13. Z.F. Fu, J.L. Ma, X.S. Zhang, B. Wang, The effect of sintering agents on the sinterability and dielectric properties of Li2Mg3TiO6 ceramics. Ferroelectr 510(1), 50–55 (2017)

    Article  CAS  Google Scholar 

  14. J. Liang, W.Z. Lu, J.M. Wu, J.G. Guan, Microwave dielectric properties of Li2TiO3 ceramics sintered at low temperatures. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 176(2), 99–102 (2011)

    Article  CAS  Google Scholar 

  15. Y.W. Tseng, J.Y. Chen, Y.C. Kuo, C.L. Huang, Low-loss microwave dielectrics using rock salt oxide Li2MgTiO4. J. Alloy Compd. 509(33), L308–L310 (2011)

    Article  CAS  Google Scholar 

  16. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crystallogr. A32(5), 751–767 (1976)

    Article  CAS  Google Scholar 

  17. M. Tabuchi, K. Ado, H. Kobayashi, I. Matsubara, H. Kageyama, M. Wakita et al., Magnetic properties of metastable lithium iron oxides obtained by solvothermal/hydrothermal reaction. J. Solid State Chem. 141(2), 5541–5561 (1998)

    Article  Google Scholar 

  18. N.E. Brese, M. O’Keeffe, Bond-valence parameters for solids. Acta Crystallogr. Sect. B: Struct. Sci. 47, 192–197 (1991)

    Article  Google Scholar 

  19. H.L. Pan, L. Cheng, H.T. Wu, Relationships between crystal structure and microwave dielectric properties of Li2(Mg1 – xCox)3TiO6 (0 ≤ x ≤ 0.4) ceramics. Ceram. Int. 43, 15018–15026 (2017)

    Article  CAS  Google Scholar 

  20. E.S. Kim, C.J. Jeon, P.G. Clem, Effects of Crystal structure on the microwave Dielectric Properties of ABO4 (A = ni, mg, Zn and B = Mo, W) Ceramics. J. Am. Ceram. Soc. 95(9), 1–5 (2012)

    Article  Google Scholar 

  21. N.X. Xu, J.H. Zhou, H. Yang, Q.L. Zhang, M.J. Wang, L. Hu, Structural evolution and microwave dielectric properties of MgO-LiF co-doped Li2TiO3 ceramics for LTCC applications. Ceram. Int. 40(9B), 15191–15198 (2014)

    Article  CAS  Google Scholar 

  22. T.Y. Qin, C.W. Zhong, Y. Qin, B. Tang, S.R. Zhang, Low-temperature sintering mechanism and microwave dielectric properties of ZnAl2O4-LMZBS composites. J. Alloys Compd. 797, 744–753 (2019)

    Article  CAS  Google Scholar 

  23. L.X. Zhang, L. Gan, H.Y. Cheng, S.F. Yuan, S.B. An, J. Jiang et al., Crystal structure, Raman spectra analysis and microwave dielectric properties optimization of (Ca0.22Li0.39Sm0.39)TiO3 ceramics doped with SmAlO3. J. Alloys Compd. 817, 152708–152714 (2020)

    Article  CAS  Google Scholar 

  24. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993)

    Article  CAS  Google Scholar 

  25. W.M. Robertson, G. Arjacalingam, S.L. Shinde, Microwave dielectric measurements of zirconia-alumina ceramic composites – A text of the clausius-mossotti mixture equations. J. Appl. Phys. 70(12), 7648–7650 (1991)

    Article  CAS  Google Scholar 

  26. E. Talebian, M. Talebian, A general review on the derivation of Clausius-Mossotti relation. Optik. 12(416), 2324–2326 (2013)

    Article  Google Scholar 

  27. H.L. Pan, H.T. Wu, Crystal structure, infrared spectra and microwave dielectric properties of new ultra low-loss Li6Mg7Ti3O16 ceramics. Ceram. Int. 43(16), 14484–14487 (2017)

    Article  CAS  Google Scholar 

  28. E.S. Kim, B.S. Chun, R. Freer, R.J. Cernik, Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: ca, Pb, Ba; B6+: Mo, W) ceramics. J. Eur. Ceram. Soc. 30(7), 1731–1736 (2010)

    Article  CAS  Google Scholar 

  29. M. Xiao, Q.Q. Gu, Z.Q. Zhou, P. Zhang, Study of the microwave dielectric properties of (La1 – xSmx)NbO4 (x = 0-0.10) ceramics via bond valence and packing fraction. J. Am. Ceram. Soc. 100, 3952–3960 (2017)

    Article  CAS  Google Scholar 

  30. H.J. Jo, E.S. Kim, Effect of Sn4+ substitution on microwave dielectric properties of (Mg0.95Ni0.05)(Ti1 – xSnx)O3 ceramics. Mater. Res. Bull. 67, 221–225 (2015)

    Article  CAS  Google Scholar 

  31. J.M. Li, Y.X. Han, T. Qiu, C.G. Jin, Effect of bond valence on microwave dielectric properties of (1-x)CaTiO3-x(Li0.5La0.5)TiO3 ceramics. Mater. Res. Bull. 47(9), 2375–2323 (2012)

    Article  CAS  Google Scholar 

  32. E.S. Kim, K.H. Yoon, Effect of nickel on microwave dielectric properties of Ba(Mg1/3Ta2/3O3. J. Mater. Sci. 29, 830–834 (1994)

    Article  CAS  Google Scholar 

  33. C.L. Huang, M.H. Weng, H.L. Chen, Effects of additives on microstructure and microwave dielectric properties of (Zr, Sn)TiO4 ceramics. Mater. Chem. Phys. 71, 17–22 (2001)

    Article  CAS  Google Scholar 

  34. E.S. Kim, W. Choi, Effect of phase transition on the microwave dielectric properties of BiNbO4. J. Eur. Ceram. Soc. 26(10–11), 176 (2006)

    Google Scholar 

  35. E.S. Kim, D.H. Kang, Relationships between crystal structure and microwave dielectric properties of (Zn1/3B2/35+)xTi1–xO2 (B 5+= nb, Ta) ceramics. Ceram. Int. 34(4), 883–888 (2008)

    Article  CAS  Google Scholar 

  36. J.C. Phillips, J.A. Vechten, Dielectric classification of crystal structures, ionization potentials, and band structures. Phys. Rev. Lett. 22(14), 705–708 (1969)

    Article  CAS  Google Scholar 

  37. B.F. Levine, Bond susceptibilities and ionicities in complex crystal structures. J. Chem. Phys. 59(3), 1463–1486 (1973)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from Suzhou Boom High Purity Materials Technology Co. Ltd and Sichuan Mianyang Weiqi Electronic Technology Co., Ltd.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study concept and design. Material preparation, data collection and analysis were carried out by HJ, TG, JG, HF, and TY. The first draft of the manuscript was written by HJ. The study was supervised by HY. All the authors have commented on previous versions of the manuscript. Final draft read and approved by all authors.

Corresponding author

Correspondence to Hongtao Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, H., Gou, T., Gao, J. et al. Effect of Zn2+ doping Li2Mg3Ti0.91(Al0.5Nb0.5)0.09O6 on structures and microwave dielectric properties. J Mater Sci: Mater Electron 34, 626 (2023). https://doi.org/10.1007/s10854-023-10040-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10040-6

Navigation