Skip to main content
Log in

Mn Modified Mesoporous TiO2 Particles: Synthesis, Characterization and Photovoltaic Application

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, manganese (Mn) modified mesoporous titanium dioxide (Mn-MT) particles were synthesized by a hydrothermal process using an impregnation method and cetyltrimethylammonium bromide as a template. This method enables synthesis at relatively low temperatures, with good surface modification resulting in ordered spherical particles. To verify the modifications in structural properties, x-ray diffraction (XRD) studies were carried out. A pure anatase phase was exhibited by both MT and Mn-MT particles. XRD patterns showed no evidence of secondary phase formation after surface modification with Mn. Optical studies of these particles were analysed by band gap studies. Both the optical and electron spin resonance studies revealed the presence of Mn in the 2+ state. Finally, these particles were coated on Si solar cells and exhibited an overall increase in efficiency of 15% when compared with bare cells, which can be attributed to better surface passivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.S. Fujishima and K. Honda, Nature 238, 37 (1972).

    Article  Google Scholar 

  2. J.H. Carey, J. Lawrence, and H.M. Tosine, Bull. Environ. Contam. Toxical. 16, 697 (1976).

    Article  Google Scholar 

  3. S.N. Frank and A.J. Bard, J. Am. Chem. Soc. 99, 303 (1977).

    Article  Google Scholar 

  4. M.R. Hoffmann, S.T. Martin, W. Choi, W. Choi, and D.W. Bahnemann, Chem. Rev. 95, 70 (1995).

    Article  Google Scholar 

  5. S.T. Chen, L. Chen, S. Gao, and G.Y. Cao, Power Technol. 160, 198 (2005).

    Article  Google Scholar 

  6. D.S. Kim and S.Y. Kwak, Appl. Catal. A 323, 110 (2007).

    Article  Google Scholar 

  7. J. Liang, N. Wang, Q. Zhang, B. Liu, X. Kong, C. Wei, D. Zhang, B. Yan, Y. Zhao, and X. Zhang, Nano Energy 42, 151 (2017).

    Article  Google Scholar 

  8. J. Liang, H. Tan, M. Liu, B. Liu, N. Wang, Q. Zhang, Y. Zhao, A.H.M. Smets, M. Zeman, and X. Zhang, J. Mater. Chem. A 43, 16841 (2016).

    Article  Google Scholar 

  9. J. Chen, Y. Huang, N. Zhang, H. Zou, R. Liu, C. Tao, X. Fan, and Z.L. Wang, Nat Energy 1, 16138 (2016).

    Article  Google Scholar 

  10. N. Zhang, J. Chen, Y. Huang, W. Guo, J. Yang, J. Du, X. Fan, and C. Tao, Adv. Mater. 28, 263 (2016).

    Article  Google Scholar 

  11. J. Chen and Z.L. Wang, Joule 1, 480 (2017).

    Article  Google Scholar 

  12. L. Li and C.Y. Liu, J. Phys. Chem. C 114, 1444 (2010).

    Article  Google Scholar 

  13. H. Wang, Y. Song, W. Liu, S. Yao, and W. Zhang, Mater. Lett. 93, 319 (2013).

    Article  Google Scholar 

  14. J.C. Yu, L. Zhang, and J. Yu, Chem. Mater. 14, 4647 (2002).

    Article  Google Scholar 

  15. K.J. Hwang, J.W. Lee, S.J. Yoo, S. Jeong, D.H. Jeong, W.G. Shim, and D.W. Cho, New J. Chem. 37, 1378 (2013).

    Article  Google Scholar 

  16. S. Chang and W. Liu, Appl. Catal. B 156–157, 466 (2014).

    Article  Google Scholar 

  17. Z. Wang, T. Jiang, Y. Du, K. Chen, and H. Yin, Mater. Lett. 60, 2493 (2006).

    Article  Google Scholar 

  18. Z. Tan, K. Sato, and S. Ohara, Adv. Powder Technol. 26, 296 (2016).

    Article  Google Scholar 

  19. R.A. Kumar, S. Yechuri, C. Chaitanya, and Ch. Rajesh, Solar RRL 12, 1800214 (2018).

    Google Scholar 

  20. R.A. Kumar, V.G. Vasavi Dutt, and C. Rajesh, Euro. Phys. J. Plus 133, 60 (2018).

    Article  Google Scholar 

  21. R. Chauhan, A. Kumar, and R.P. Chaudhary, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 98, 256 (2012).

    Article  Google Scholar 

  22. Z. Xu, C. Li, N. Fu, W. Li, and G. Zhang, J. Appl. Electrochem. 48, 1197 (2018).

    Article  Google Scholar 

  23. R.A. Kumar, A.V. Rao, and Ch. Rajesh, Euro. Phys. J. Plus 133, 179 (2018).

    Article  Google Scholar 

  24. B.S. Reddy, N.O. Gopal, K.V. Narasimhulu, C.L. Raju, J.L. Rao, and B.C.V. Reddy, J. Mol. Struct. 751, 161 (2005).

    Article  Google Scholar 

  25. S. Pitula and A.V. Mudring, Chem. Eur. J. 16, 3355 (2010).

    Article  Google Scholar 

  26. J. Cao, J. Yang, Y. Zhang, L. Yang, D. Wang, M. Wei, Y. Wang, Y. Liu, M. Gao, and X. Liu, J. Phys. D: Appl. Phys. 43, 075403 (2010).

    Article  Google Scholar 

  27. G.K.B. Costa, S.S. Pedro, I.C.S. Carvalho, and L.P. Sosman, Opt. Mater. 31, 1620 (2009).

    Article  Google Scholar 

  28. A.D. Lad, C. Rajesh, M. Khan, N. Ali, I.K. Gopalakrishnan, S.K. Kulshreshtha, and S. Mahamuni, J. Appl. Phys. 101, 103906 (2007).

    Article  Google Scholar 

  29. T.A. Kennedy, E.R. Glaser, P.B. Klein, and R.N. Bhargava, Phys. Rev. B 52, R14356 (1995).

    Article  Google Scholar 

  30. P.H. Borse, D. Srinivas, R.F. Shinde, S.K. Date, W. Vogel, and S.K. Kulkarni, Phys. Rev. B 60, 8659 (1999).

    Article  Google Scholar 

  31. Z.V. Saponjic, N.M. Dimitrijevic, O.G. Poluektov, L.X. Chen, E. Wasinger, U. Welp, D.M. Tiede, X. Zuo, and T. Rajh, J. Phys. Chem. B 110, 25441 (2006).

    Article  Google Scholar 

  32. A. Kosemen, Z.A. Kosemen, B. Cnimkubey, M. Erkovan, F. Basarir, S.E. San, O. Ornek, and A.V. Tunc, Sol. Energy 132, 511 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank K. L. E. F. for their support during the work and Department of Science and Technology for providing the funding under the scheme of Young Scientist, File No: SB/FTP/ETA-0213/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Rajesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajay Kumar, R., Yechuri, S., Kiran Kumar, G. et al. Mn Modified Mesoporous TiO2 Particles: Synthesis, Characterization and Photovoltaic Application. J. Electron. Mater. 48, 5075–5079 (2019). https://doi.org/10.1007/s11664-019-07312-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07312-5

Keywords

Navigation