Skip to main content

Advertisement

Log in

Temperature Effect on the First Excited State Energy and Average Phonon Number of Bound Magnetopolarons in Monolayer Graphene

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Temperature effect on the first excited state energy and average phonon number of the bound magnetopolarons in monolayer graphene are studied by using the Lee-Low-Pine variational method and linear combination operators. It is shown that the average number of the optical phonons and first excited state are obviously influenced by the temperature and magnetic field. The first excited state energy of the bound magnetopolaron depends on the temperature, homogeneous magnetic field, Debye cut-off wave-number and confinement bound parameter. Moreover, we find that the temperature effect on the first excited state energy can be modulated by Coulomb interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, S.V. Morozov, D. Jiang, S.V. Dubonos, and I.V. Grigorieva, Science 306, 666 (2004).

    Article  Google Scholar 

  2. E.S. Morell, J.D. Correa, and P. Vargas, Phys. Rev. B 82, 121407 (2010).

    Article  Google Scholar 

  3. X. Du, I. Skachko, A. Barker, and E.Y. Andrei, Nat. Nanotechnol. 3, 491 (2008).

    Article  Google Scholar 

  4. P. Avouris, Z.H. Chen, and V. Perebeinos, Nat. Nanotechnol. 2, 605 (2007).

    Article  Google Scholar 

  5. J. Yan, Y.B. Zhang, P. Kim, and A. Pinczuk, Phys. Rev. Lett. 98, 166802 (2007).

    Article  Google Scholar 

  6. C. Lee, X.D. Wei, J.W. Kysar, and J. Hone, Science 321, 385 (2008).

    Article  Google Scholar 

  7. H.Y. Kim, K. Lee, N. Mcevoy, C. Yim, and G.S. Duesberg, Nano Lett. 13, 2182 (2013).

    Article  Google Scholar 

  8. M. Liu, X. Yim, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, Nature 474, 64 (2011).

    Article  Google Scholar 

  9. N.M. Gabor, J. Song, N.L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L.S. Levitov, and P. Jarillo-Herrero, Science 334, 648 (2001).

    Article  Google Scholar 

  10. S. Gilje, S. Han, M. Wang, K.L. Wang, and R.B. Kaner, Nano Lett. 7, 3394 (2007).

    Article  Google Scholar 

  11. B. Standley, W.Z. Bao, H. Zhang, J. Bruck, C.N. Lau, and M. Bockrath, Nano Lett. 8, 3345 (2008).

    Article  Google Scholar 

  12. D. Sun, G. Aivazian, A.M. Jones, J.S. Ross, W.D. Yao, D. Cobden, and X.D. Xu, Nat. Nanotechnol. 7, 114 (2012).

    Article  Google Scholar 

  13. Y. Liu, R. Cheng, L. Liao, H.L. Zhou, J.W. Bai, G. Liu, L.X. Liu, Y. Huang, and X.F. Duan, Nat. Commun 2, 579 (2011).

    Article  Google Scholar 

  14. J.C.W. Song, M.S. Rudner, and M.C. Marcus, Nano Lett. 11, 4688 (2013).

    Article  Google Scholar 

  15. H. Xu, J.X. Wu, Y.B. Chen, and H.L. Zhang, Asian 8, 2446 (2013).

    Article  Google Scholar 

  16. Z.H. Ding, Y. Zhao, and J.L. Xiao, Superlattices Microstruct. 97, 298 (2016).

    Article  Google Scholar 

  17. A.T. Apostolov and I.N. Apostolova, Phys. Condens. Matter 24, 235401 (2012).

    Article  Google Scholar 

  18. A.C. Ferrari, Solid State Commun. 143, 47 (2007).

    Article  Google Scholar 

  19. I. Calizo, A.A. Balandin, W. Bao, and F. Miao, Nano Lett. 7, 2645 (2007).

    Article  Google Scholar 

  20. N.M.R. Peres, Rev. Mod. Phys. 82, 2673 (2010).

    Article  Google Scholar 

  21. J.B. Oostimga, H.B. Heersche, and X. Liu, Nat. Mater. 7, 151 (2008).

    Article  Google Scholar 

  22. O.O. Sobol, P.K. Pyatkovskiy, E.V. Gorbar, and V.P. Gusynin, Phys. Rev. B 94, 115409 (2016).

    Article  Google Scholar 

  23. P. Boross and A. Palyi, Phys. Rev. B 92, 035420 (2015).

    Article  Google Scholar 

  24. Z. Gao, Y. Zhang, and Y. Fu, Carbon 61, 342 (2013).

    Article  Google Scholar 

  25. Q. Li, Y.F. Guo, and W.W. Li, Chem. Mater. 26, 4459 (2014).

    Article  Google Scholar 

  26. G.Q. Xin, H.T. Sun, and T. Hu, Adv. Mater. 26, 4521 (2014).

    Article  Google Scholar 

  27. X.J. Ma, C.H. Jia, and Z.H. Ding, Superlattices Microstruct. 123, 30 (2018).

    Article  Google Scholar 

  28. L.A. Chizhova, J. Burgdorfer, and F. Libisch, Phys. Rev. Lett. 99, 166802 (2007).

    Article  Google Scholar 

  29. S.Y. Zhou, G.H. Gweon, A.V. Fedorov, P.N. First, W.A.D. Heer, D.H. Lee, F. Guinea, A.H.C. Neto, and A. Lanzara, Nat. Mater. 6, 770 (2007).

    Article  Google Scholar 

  30. J. Jung, A.M. DaSilva, A.H. MacDonald, and S. Adam, Nat. Commun. 6, 6308 (2015).

    Article  Google Scholar 

  31. J.P. Hague, Phys. Rev. B 84, 155438 (2011).

    Article  Google Scholar 

  32. W.P. Li, Z.W. Wang, J.W. Yin, and Y.F. Yu, J. Phys. Condens. Matter 24, 135301 (2012).

    Article  Google Scholar 

  33. Z.G. Chen, Z.W. Shi, W. Yang, X.B. Lu, Y. Lai, H.G. Yan, F. Wang, G.Y. Zhang, and Z.Q. Li, Nat. Commun. 5, 4461 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Science Foundation of China under Grant No. 11464033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Lin Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, ZH., Gen, YB., Jia, CH. et al. Temperature Effect on the First Excited State Energy and Average Phonon Number of Bound Magnetopolarons in Monolayer Graphene. J. Electron. Mater. 48, 4997–5002 (2019). https://doi.org/10.1007/s11664-019-07294-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07294-4

Keywords

Navigation