Skip to main content
Log in

Temperature Dependence of the Ground State of Impurity Bound Magneto-Acoustic Polarons in Monolayer Graphene

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The properties of impurity bound magneto-acoustic strong-coupling polarons in monolayer graphene are examined. The energies of the ground state of the impurity bound magneto-acoustic polaron were obtained by using the linear combination operator and the well-known Lee-Low-Pines transformation methods. By employing the quantum statistics theory, the temperature effects on the ground state energy of magneto-acoustic polarons in monolayer graphene were calculated. The results of the numerical model with regards to the temperature, Coulombic impurity potential, Debye cut-off wavenumber and magnetic field strength are discussed, and it was revealed that the tuning of these factors can offer a way of adjusting the ground state energy of the magneto-acoustic polaron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Stankovich, D.A. Dikin, G.H.B. Dommett et al., Nature 442(7100), 282 (2006)

    Article  ADS  Google Scholar 

  2. D.K. Efetov, P. Kim, Phys. Rev. Lett. 105(25), 256805 (2010)

    Article  ADS  Google Scholar 

  3. J. Ye, M.F. Craciun, M. Koshino et al., Proc. Natl. Acad. Sci. 108(32), 13002–13006 (2011)

    Article  ADS  Google Scholar 

  4. H. Li, X. Han, A.S. Childress et al., Physica E 107, 96–100 (2019)

    Article  ADS  Google Scholar 

  5. J. Yan, Y. Zhang, P. Kim et al., Phys. Rev. Lett. 98(16), 166802 (2007)

    Article  ADS  Google Scholar 

  6. J.K. Viljas, T.T. Heikkilä, Phys. Rev. B 81(24), 245404 (2010)

    Article  ADS  Google Scholar 

  7. M. An, Q. Song, X. Yu et al., Nano Lett. 17(9), 5805–5810 (2017)

    Article  ADS  Google Scholar 

  8. C.B. McKitterick, D.E. Prober, M.J. Rooks, Phys. Rev. B 93(7), 075410 (2016)

    Article  ADS  Google Scholar 

  9. C. Neumann, S. Reichardt, M. Drögeler et al., Nano Lett. 15(3), 1547–1552 (2015)

    Article  ADS  Google Scholar 

  10. X.Y. Fang, X.X. Yu, H.M. Zheng et al., Phys. Lett. A 379(37), 2245–2251 (2015)

    Article  ADS  Google Scholar 

  11. H.K. Avetissian, G.F. Mkrtchian, Phys. Rev. B 97(11), 115454 (2018)

    Article  ADS  Google Scholar 

  12. H. Hu, X. Yang, F. Zhai et al., Nature Commun. 7, 12334 (2016)

    Article  ADS  Google Scholar 

  13. F.J. Bezares, A.D. Sanctis, J.R.M. Saavedra et al., Nano Lett. 17(10), 5908–5913 (2017)

    Article  ADS  Google Scholar 

  14. A. Georgi, P. Nemes-Incze, R. Carrillo-Bastos et al., Nano Lett. 17(4), 2240–2245 (2017)

    Article  ADS  Google Scholar 

  15. Z.Q. Fu, K.K. Bai, Y.N. Ren et al., Phys. Rev. B 101(23), 235310 (2020)

    Article  ADS  Google Scholar 

  16. Y. Wang, V.W. Brar, A.V. Shytov et al., Nat. Phys. 8(9), 653–657 (2012)

    Article  Google Scholar 

  17. J. Wang, F. Ma, W. Liang et al., Mater. Today Phys. 2, 6–34 (2017)

    Article  Google Scholar 

  18. S.M. Badalyan, A.P. Jauho, Phys. Rev. Res. 2(1), 013086 (2020)

    Article  Google Scholar 

  19. E.H. Hwang, S.D. Sarma, Phys. Rev. Res. 2(1), 013342 (2020)

    Article  Google Scholar 

  20. T.S. Sreeprasad, V. Berry, Small 9(3), 341–350 (2013)

    Article  Google Scholar 

  21. W.P. Li, Z.W. Wang, J.W. Yin et al., J. Phys. Condens. Matter. 24, 135301 (2012)

    Article  ADS  Google Scholar 

  22. W.J. Huybrechts, J. Phys. C Solid State Phys. 10, 3761 (1977)

    Article  ADS  Google Scholar 

  23. T.D. Lee, F.E. Low, D. Pines, Phys. Rev. 90, 297 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  24. J.T. Devreese, Polarons in Ionic Crystals and Polar Semiconductors (North-Holland Publ. Co., Amsterdam, 1972).

    Google Scholar 

  25. Z. Wang, X. Xiong, J. Li et al., Mater. Today Phys. 16, 100290 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This project was supported by the National Natural Science Foundation of China under Grant No.11464033 and Natural Science Foundation of Inner Mongolia Autonomous Region of China under Grant No. 2019MS01008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Lin Xiao.

Additional information

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, JL. Temperature Dependence of the Ground State of Impurity Bound Magneto-Acoustic Polarons in Monolayer Graphene. J Low Temp Phys 203, 65–73 (2021). https://doi.org/10.1007/s10909-021-02578-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02578-8

Keywords

Navigation