Skip to main content
Log in

Rashba Interaction in Polysilicon Layers SemOI-Structures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The measurements of the magnetoresistance for p-type poly-Si with concentration 2.4 × 1018 cm−3 were carried out in the low temperature range 4.2–20 K and in the magnetic field up to 14 T. The results showed the presence of a negative magnetoresistance in polycrystalline silicon films in SemOI-structures. The low-temperature transport of charge carriers in p-type polycrystalline silicon films was considered within the framework of hopping conductivity and can be described by the spin–orbital interaction in the theory of weak localization. The calculated values of the coherence phase length 3–4 nm and the spin–orbit coherence length 30–50 nm at low temperatures 4.2–30 K correlate with parameters of hopping conductance and grain size, respectively, which show a contribution of Rashba spin–orbit interaction with energy ΔSO = 1.6 meV in the conductance not only inside the grains, but also its surface and between grain boundaries of polycrystalline silicon in SemOI structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SemOI-structures:

Semiconductor-on-insulator structures

NMR:

Negative magnetoresistance

LPCVD:

Low pressure chemical vapour deposition

SOI:

Spin–orbital interaction

WL:

Weak localization

WAL:

Weak antilocalization

References

  1. G.K. Celler and S. Cristoloveanu, J. Appl. Phys. 93, 4955 (2003).

    Article  Google Scholar 

  2. R. Jansen, Nat. Mater. 11, 400 (2012).

    Article  Google Scholar 

  3. V. Holota, I. Kogut, A. Druzhinin, and Y. Khoverko, Adv. Mater. Res. 854, 45 (2014).

    Article  Google Scholar 

  4. K. Bernstein and N.J. Rochler, Handbook (New York: Kluwer Academic Press, 2000), p. 220.

    Google Scholar 

  5. V. Šnejdar and J. Jerhot, Thin Solid Films 37, 303 (1976).

    Article  Google Scholar 

  6. H. Takato, I. Sakata, and R. Shimokawa, Jpn. J. Appl. Phys. 41, L870 (2002).

    Article  Google Scholar 

  7. A. Druzhinin, Yu Khoverko, I. Kogut, and R. Koretskii, Adv. Mater. Res. 854, 49 (2014).

    Article  Google Scholar 

  8. A. Druzhinin, I. Maryamova, I. Kogut, and Yu Khoverko, Adv. Mater. Res. 276, 109 (2011).

    Article  Google Scholar 

  9. A. Druzhinin, I. Ostrovskii, I. Kogut, Y. Khoverko, R. Koretskii, and I. Kogut, Mater. Sci. Semicond. Process. 31, 19 (2015).

    Article  Google Scholar 

  10. A. Druzhinin, I. Ostrovskii, Y. Khoverko, S. Nichkalo, and I. Kogut, Phys. Status Solidi C 11, 156 (2014).

    Article  Google Scholar 

  11. C.H. Olk, S.M. Yalisove, J.P. Heremans, and G.L. Doll, Phys. Rev. B 52, 4643 (1995).

    Article  Google Scholar 

  12. S. Ishida, S. Takaoka, K. Oto, K. Murase, S. Shirai, and T. Serikawa, Appl. Surf. Sci. 113–114, 685 (1997).

    Article  Google Scholar 

  13. J.B. Webb, M. Paiment, and T. Sudersena Rao, Solid State Commun. 71, 871 (1989).

    Article  Google Scholar 

  14. S. Ishida, K. Takeda, A. Okamoto, and I. Shibasaki, Phys. Status Solidi (c) 2, 3067 (2005).

    Article  Google Scholar 

  15. V.A. Voronin, A.A. Druzhinin, I.I. Maryamova, V.G. Kostur, and YuM Pankov, Sensors Actuators 30, 143 (1992).

    Article  Google Scholar 

  16. A.S. Troup, J. Wunderlich, and D.A. Williams, J. Appl. Phys. 101, 033701 (2007).

    Article  Google Scholar 

  17. P.J. Newton, R. Mansell, S.N. Holmes, M. Myronov, and C.H.W. Barnes, Appl. Phys. Lett. 110, 062101 (2017).

    Article  Google Scholar 

  18. S. Hikami, A. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).

    Article  Google Scholar 

  19. A. Druzhinin, I. Ostrovskii, Yu Khoverko, N. Shcherban, and A. Lukianchenko, J. Magn. Magn. Mater. 473, 331 (2019).

    Article  Google Scholar 

  20. S.I. Dorozhkin, A.A. Kapustin, and S.S. Murzin, JETP Lett. 97, 149 (2013).

    Article  Google Scholar 

  21. V.F. Gantmakher and V.T. Dolgopolov, UFN 178, 3 (2008).

    Article  Google Scholar 

  22. S. Kettemann, Phys. Rev. Lett. 98, 176808 (2007).

    Article  Google Scholar 

  23. P. Kleimann, B. Semmache, M. Le Berre, and D. Barbier, Phys. Rev. B 57, 8966 (1998).

    Article  Google Scholar 

  24. D. K. Ferry, (Taylor & Francis, London, 2000), 384 p

Download references

Acknowledgments

The authors thank Dr. Koreckii R.M. (Lviv Polytechnic National University) for the spray technical support and sample preparation.

Author information

Authors and Affiliations

Authors

Contributions

AD provided the technical support and conceptual advice, IO analyses and drafted the manuscript, YuK and KR designed and conducted the experiments and performed the characterization of microcrystals, modified the manuscript and drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yuriy Khoverko.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Human and Animal Rights Statement

This study has nothing to do with human participants or health-related outcomes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Druzhinin, A., Ostrovskii, I., Khoverko, Y. et al. Rashba Interaction in Polysilicon Layers SemOI-Structures. J. Electron. Mater. 48, 4934–4938 (2019). https://doi.org/10.1007/s11664-019-07290-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07290-8

Keywords

Navigation