Skip to main content
Log in

Characterization of Zinc Ferrite Nanoparticles Capped with Different PVP Concentrations

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of polyvinyl pyrrolidone (PVP) as a capping agent on the structure, morphology, magnetic hysteresis (M–H) loop, optical and dielectric properties of ZnFe2O4 nanoparticles synthesized by a co-precipitation method were investigated. The precursors used during preparation were FeCl3·6H2O, ZnCl2, and 4 M NaOH with different concentrations of PVP: 0 (pure sample), 0.35 × 10−3 M, 0.69 × 10−3 M, 1.03 × 10−3 M, and 1.38 × 10−3 M. The prepared samples were characterized and investigated using x-ray powder diffraction (XRD), transmission electron microscope (TEM), UV–visible optical spectroscopy, Fourier transform infrared (FTIR), magnetic hysteresis (M–H), and dielectric measurements. XRD patterns reveal a face-centered cubic structure for ZnFe2O4 and confirm that the lattice parameter decreases as the PVP concentration increases. TEM results reveal some aggregation of nanoparticles and a decrease in crystallite size with increasing PVP addition. The energy gap (Eg) increases with an increase of PVP concentration, confirming the decrease of crystallite size as the PVP concentration increases. The FTIR results indicate that PVP addition induces a blue shift with slight variations in the wavelengths of the metal oxide bands. M–H results show that the uncapped PVP sample exhibits ferromagnetic behavior that changes to superparamagnetic with PVP addition up to 1.03 × 10−3 M, along with an increase in the saturation magnetization Ms. The coercivity Hc increases up to a PVP concentration of 0.35 × 10−3 M, and then decreases up to a PVP concentration of 1.03 × 10−3 M. The dielectric constant and dielectric loss measured at room temperature decrease when increasing the frequency, but increase when increasing the temperature or PVP concentration. These results indicate that there is a critical amount of PVP that must be added in order to control the properties of ZnFe2O4 nanoparticles to use them for dielectric and magnetic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Lin, D. Zhang, X. Pan, Y. Du, J. Liu, D. Fan, Y. Wang, K. Bi, and M. Lei, J. Nanosci. Nanotechnol. 17, 2917 (2017).

    Article  Google Scholar 

  2. M.A. Ali, M.M. Uddin, M.N.I. Khan, F.U.Z. Chowdhury, and S.M. Haque, Chin. Phys. B 7, 26 (2017).

    Google Scholar 

  3. S. Manjura Hoque, M. Sazzad Hossain, C. Shamima, S. Akhter, and F. Hyder, J. Mater. Lett. 162, 60–63 (2016).

    Article  Google Scholar 

  4. S. Balci, I. Sefa, and N. Altin, J. Electron. Mater. (2016). https://doi.org/10.1007/s11664-016-4559-5.

    Google Scholar 

  5. Y. Huang, Y. Liang, Y. Rao, D. Zhu, J. Cao, Z. Shen, W. Ho, and S. C. Lee, Environ. Sci. Technol. 51, 2924–2933 (2017).

    Article  Google Scholar 

  6. S.A. Seyyed Ebrahimi and S.M. Masoudpanah, J. Magn. Magn. Mater. 357, 77–81 (2014).

    Article  Google Scholar 

  7. X. Liu, J. Liu, S. Zhang, Z. Nan, and Q. Shi, J. Phys. Chem. C 120, 1328–1341 (2016).

    Article  Google Scholar 

  8. C. Suchomski, B. Breitung, R. Witte, M. Knapp, S. Bauer, T. Baumbach, C. Reitz, T. Brezesinski, and Beilstein, J. Nanotechnol. 7, 1350–1360 (2016).

    Google Scholar 

  9. I. Ibrahim, O. Ali, I.M.T. Salama, A.A. Bahgat, and M. Mohamed, Appl. Catal. B Environ. 181, 389–402 (2016).

    Article  Google Scholar 

  10. Y. Zhang, Y. Wu, Q. Qin, F. Wang, and D. Chen, J. Magn. Magn. Mater. 409, 6–9 (2016).

    Article  Google Scholar 

  11. R. Awad, A.I. Abou Aly, N.H. Mohammed, S. Isber, H.A. Motaweh, and D. El-Said Bakeer, J. Alloys Compd. 610, 614–622 (2014).

    Article  Google Scholar 

  12. C. Wanga, X. Tanb, J. Yana, B. Chaia, J. Lia, and S. Chenc, Appl. Surf. Sci. 396, 780–790 (2017).

    Article  Google Scholar 

  13. A. Marzouk, M. Abu-Dief, and A.A. Abdelhamid, Appl. Organometal. Chem. 32, 3794 (2017).

    Article  Google Scholar 

  14. A.M. Abu-Dief and S.M. Abdel-Fatah, BJBAS (2017). https://doi.org/10.1016/j.bjbas.2017.05.008.

    Google Scholar 

  15. R. Sagayaraj, S. Aravazhi, P. Praveen, and G. Chandrasekaran, J. Mater. Sci. Mater. Electron. 29, 2151–2158 (2017).

    Article  Google Scholar 

  16. K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, and S.E. Skrabalak, Dalton Trans. R. Soc. Chem. (2015). https://doi.org/10.1039/c5dt02964c.

    Google Scholar 

  17. H. Kamari, M. GoodarzNaseri, and E.B. Saion, Metals 4, 118–129 (2014).

    Article  Google Scholar 

  18. M. GoodarzNaseri, E.B. Saion, and N. Zadeh, Int. Nano Let. (2013). https://doi.org/10.1186/2228-5326-3-19.

    Google Scholar 

  19. Z. Bitar, D. El-Said Bakeer, and R. Awad, IOP Conf. Ser. J. Phys. Conf. Ser. 869, 012045 (2017).

    Article  Google Scholar 

  20. A. Manikandan, L. JohnKennedy, M. Bououdina, and J. JudithVijaya, Superlattices Microst. (2014). https://doi.org/10.1016/j.spmi.2013.09.021.

    Google Scholar 

  21. Zulfiqar, S. Afzal, R. Khan, T. Zeb, M. Rahman, A. Burhanullah, S. Ali, G. Khan, Z. Rahmana, and Hussain, J. Mater. Sci. Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-0134-6.

    Google Scholar 

  22. K. Zhou, W. Chen, X. Wu, W. Wu, C. Lin, and J. Wu, J. Electron. Mater. 46, 4618 (2017).

    Article  Google Scholar 

  23. I. Ahmad, S.M. Shah, M.N. Ashiq, F. Nawaz, A. Shah, M. Siddiq, I. Fahim, and S. Khan, J. Electron. Mater. 45, 4979 (2016).

    Article  Google Scholar 

  24. A. Saini, A. Thakur, and P. Thaku, J. Electron. Mater. (2016). https://doi.org/10.1007/s11664-016-4634-y.

    Google Scholar 

  25. I. Bodale, M. Oprisan, C. Stan, F. Tufescu, M. Racuciu, D. Creanga, and M. Balasoiu, in IFMBE Proceedings (2016), pp. 153–156.

  26. A. Syafiuddin, S. Salmiati, T. Hadibarata, A. Beng Hong Kueh, M. Razman Salim, and M. Abbas Ahmad Zaini, Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-19375-1.

    Google Scholar 

  27. M.D. Johan Ooi and M.M. Hassin, MAS 3, 2 (2009).

    Google Scholar 

  28. R. Hassan, J. Hassan, M. Hashim, S. Paiman, and R. Azis, J. Adv. Ceram. (2014). https://doi.org/10.1007/s40145-014-0122-0.

    Google Scholar 

  29. H.A. Ahmad, N.M. Saiden, E. Saion, R.S. Azis, M.S. Mamat, and M. Hashim, J. Magn. Magn. Mater. (2017). https://doi.org/10.1016/j.jmmm.2016.12.047.

    Google Scholar 

  30. J. Li, K. Inukai, Y. Takahashi, A. Tsuruta, and W. Shin, J. Asian Ceram. Soc. 5, 216–225 (2017).

    Article  Google Scholar 

  31. J. Hwang, Y. Shim, S. Yoon, S. Hyun Lee, and S. Park, R. Soc. Chem. (2016). https://doi.org/10.1039/c5ra28003f.

    Google Scholar 

  32. M. Mozaffari and H. Masoudi, J. Supercond. Nov. Magn. 27, 2563–2567 (2014).

    Article  Google Scholar 

  33. M. Suzuki, K. Nakata, R. Kuroda, T. Kobayashi, and E. Tokunaga, Chem. Phys. 469–470, 88–96 (2016).

    Article  Google Scholar 

  34. T.M. Hammad, J.K. Salem, A. Abu Amsha, and N.K. Hejazy, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.01.123.

    Google Scholar 

  35. A.G. Hufnagel, K. Peters, A. Müller, C. Scheu, D. Fattakhova-Rohlfing, and T. Bein, Adv. Funct. Mater. 26, 4435–4443 (2016).

    Article  Google Scholar 

  36. M.F. Valan, A. Manikandan, and S. Arul Antony, J. Nanosci. Nanotechnol. (2015). https://doi.org/10.1166/jnn.2015.9801.

    Google Scholar 

  37. P. Sun Yoo, D.A. Reddy, Y. Jia, S. Bae, S. Huh, C. Liu, and J. Colloid, Interface Sci. (2017). https://doi.org/10.1016/j.jcis.2016.09.066.

    Google Scholar 

  38. P. Vinosha, L. Ansel Mely, J. EmimaJeronsia, S. Krishnan, and S. Jerome Das, Optik 134, 99–108 (2017).

    Article  Google Scholar 

  39. A. Singh, A. Singh, S. Singh, P. Tandon, B.C. Yadav, and R.R. Yadav, J. Alloys Compd. 618, 475–483 (2015).

    Article  Google Scholar 

  40. M. Shahmiri, N. Ibrahima, F. Shayesteh, N. Asim, and N. Motallebi, J. Mater. Res. (2013). https://doi.org/10.1557/jmr.2013.316.

    Google Scholar 

  41. A. Awadallaha, S.H. Mahmood, Y. Maswadeh, I. Bsoul, M. Awawdeh, Q.I. Mohaidat, and H. Juwhari, Mater. Res. Bull. 74, 192–201 (2016).

    Article  Google Scholar 

  42. D. Maiti, A. Saha, and P. Sujatha Devi, J. Phys. Chem. Chem. Phys. 18, 1439–1450 (2016).

    Article  Google Scholar 

  43. R.B. Jotania, R.A. Nandotaria, C.C. Chauhan, M. Hashim, S.S. Meena, and S.E. Shirsath, Ceram. Int. 42, 2289–2298 (2016).

    Article  Google Scholar 

  44. M. Zargar Shoushtari, A. Emami, and S. Mosavi Ghahfarokhi, Mater. Res. Express 5, 075024 (2018).

    Article  Google Scholar 

  45. M. Zargar Shoushtari, A. Emami, and S. Mosavi Ghahfarokhi, Mater. Res. Express 419, 572–579 (2016).

    Google Scholar 

  46. B. Hangai, E. Borsari, E.C. Aguiar, F.G. Garcia, E. Longo, and A.Z. Simoes, J. Mater. Sci. Mater. Electron. 28, 10772–10779 (2017).

    Article  Google Scholar 

  47. M. Obaidat, B. Issa, and Y. Haik, Nanomaterials 2079–4991, 63–89 (2015).

    Article  Google Scholar 

  48. M. Vadivel, R. Ramesh Babu, K. Ramamurthi, and M. Arivanandhan, Nano-Struct. Nano-Obj. 11, 112–123 (2017).

    Article  Google Scholar 

  49. P. Veverka, K. Knızek, E. Pollert, J. Bohacek, S. Vasseur, E. Duguet, and J. Portier, J. Magn. Magn. Mater. (2006). https://doi.org/10.1016/j.jmmm.2006.06.019.

    Google Scholar 

  50. H. Hoffmann, Thin Solid Films 58, 223–233 (1979).

    Article  Google Scholar 

  51. S.S. Kumbhar, M.A. Mahadik, S.S. Shinde, K.Y. Rajpure, and C.H. Bhosale, J. Photochem. Photobiol. B Biol. 142, 118–123 (2015).

    Article  Google Scholar 

  52. T. Thu Nga Vu, G. Teyssedre, S. Roy Le, and C. Laurent, Technologies 5, 27 (2017).

    Article  Google Scholar 

  53. R.A. Pawar, S.S. Desai, S.M. Patange, S.S. Jadhav, and K.M. Jadhav, Phys. B Phys. Condens. Matter 510, 74–79 (2017).

    Article  Google Scholar 

  54. K. Mandal, S. Singh, P. Dey, J.N. Roy, P.R. Mandal, and T.K. Nath, J. Alloys Compd. 656, 887–896 (2015).

    Article  Google Scholar 

  55. R. Singh Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, J. Švec, V. Enev, and M. Hajdúchová, Adv. Nat. Sci. Nanosci. Nanotechnol. (2017). https://doi.org/10.1016/j.jpcs.2017.05.029.

    Google Scholar 

  56. N. Ponpandian and A. Narayanasamy, J. Appl. Phys. 92, 2770 (2002).

    Article  Google Scholar 

  57. K. Ramarao, B. Rajesh Babu, B. Kishore Babu, V. Veeraiah, S.D. Rama Rao, K. Rajasekhar, and A. Venkateswararao, J. Electron. Mater. (2018). https://doi.org/10.1007/s11664-018-6179-8.

    Google Scholar 

  58. T. Khoon, J. Hassan, Z. Abd Wahab, and R. Syahid Ahazis, Eng. Sci. Technol. (2016). https://doi.org/10.1016/j.jestch.2016.08.002.

    Google Scholar 

  59. M.N. Siddique, A. Ahmed, and P. Tripathi, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2017.11.114.

    Google Scholar 

Download references

Acknowledgments

This work was performed in the materials science lab, Physics Department, Faculty of Science, Beirut Arab University, in collaboration with the Faculty of Science, Alexandria University, Alexandria, Egypt and the Faculty of Science, Lebanese University, Beirut, Lebanon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Alsayed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsayed, Z., Badawi, M.S. & Awad, R. Characterization of Zinc Ferrite Nanoparticles Capped with Different PVP Concentrations. J. Electron. Mater. 48, 4925–4933 (2019). https://doi.org/10.1007/s11664-019-07288-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07288-2

Keywords

Navigation