Skip to main content

Advertisement

Log in

Visible Light Driven Photocatalytic Activity of Granular Pr Doped LaFeO3

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The use of the perovskite oxides as the photocatalyst for the degradation of the aquatic pollutants and for the renewable energy production (by converting the solar energy into the chemical energy) is of huge research interest. The effect of Pr doping on the photocatalytic activity of the perovskite oxide LaFeO3 synthesized by the sol–gel route has been investigated. The materials are characterized by the scanning electron microscopy, UV–Visible diffuse reflectance spectroscopy, photoluminescence spectroscopy and impedance spectroscopy. The photocatalytic activity of the materials is achieved by the photocatalytic decomposition of the aqueous solution of the pollutant rhodamine B (Rh-B) under the visible light irradiation. The Pr doped materials show more enhanced photocatalytic efficiency than the pure LaFeO3. The 50% Pr doped LaFeO3 (La0.5Pr0.5FeO3) shows 93% degradation of Rh-B in 4 h. The enhanced photocatalytic activity of Pr doped LaFeO3 may be due to the increased optical absorption, the decreased recombination probability of the electron–hole pairs, as well as the efficient migration of the photogenerated charge carriers. The mechanism of the photocatalytic activity of the materials has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Byrappa, A.S. Dayananda, C.P. Sajan, B. Basavalingu, M.B. Shayan, K. Soga, and M. Yoshimura, J. Mater. Sci. 43, 2348 (2008).

    Article  Google Scholar 

  2. X. Kang and S. Chen, J. Mater. Sci. 45, 2696 (2010).

    Article  Google Scholar 

  3. W. Cun, W. Xinming, Z. Jincai, M. Bixian, S. Guoying, P. Pingan, and F. Jiamo, J. Mater. Sci. 37, 2989 (2002).

    Article  Google Scholar 

  4. R. Yin, Q. Luo, D. Wang, H. Sun, Y. Li, X. Li, and J. An, J. Mater. Sci. 49, 6067 (2014).

    Article  Google Scholar 

  5. S. Irfan, L. Li, A.S. Saleemib, and C.W. Nana, J. Mater. Chem. A 5, 11143 (2017).

    Article  Google Scholar 

  6. M.A. Peña and J.L.G. Fierro, Chem. Rev. 101, 1981 (2001).

    Article  Google Scholar 

  7. R.E. Schaak and T.E. Mallouk, Chem. Mater. 14, 1455 (2002).

    Article  Google Scholar 

  8. S. Royer, D. Duprez, F. Can, X. Courtois, C. Batiot-Dupeyrat, S. Laassiri, and H. Alamdari, Chem. Rev. 114, 10292 (2014).

    Article  Google Scholar 

  9. J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao, and J. Li, ACS Catal. 4, 2917 (2014).

    Article  Google Scholar 

  10. K.M. Parida, K.H. Reddy, S. Martha, D.P. Das, and N. Biswal, Int. J. Hydrog. Energy 35, 12161 (2010).

    Article  Google Scholar 

  11. K. Mukhopadhyay, A.S. Mahapatra, and P.K. Chakrabarti, J. Magn. Magn. Mater. 329, 133 (2013).

    Article  Google Scholar 

  12. L. Liu, K. Sun, X. Li, M. Zhang, Y. Liu, N. Zhang, and X. Zhou, Int. J. Hydrog. Energy 37, 12574 (2012).

    Article  Google Scholar 

  13. P. Song, Q. Wang, Z. Zhang, and Z. Yang, Sens. Actuators B Chem. 147, 248 (2010).

    Article  Google Scholar 

  14. V.M. Gaikwad, J.R. Sheikh, and S.A. Acharya, J. Sol–Gel. Sci. Technol. 015, 3746 (2015).

    Google Scholar 

  15. L. Shudan, J. Liqiang, F. Wei, Y. Libin, X. Baifu, and F. Honggang, Mater. Res. Bull. 42, 203 (2007).

    Article  Google Scholar 

  16. Z.M. El-Bahy, A.A. Ismail, and R.M. Mohamed, J. Hazard. Mater. 166, 138 (2009).

    Article  Google Scholar 

  17. L. Hou, G. Sun, K. Liu, Y. Li, and F. Gao, J. Sol–Gel. Sci. Technol. 40, 9 (2006).

    Article  Google Scholar 

  18. H. Tavakkoli, D. Beiknejad, and T. Tabari, Desalination Water Treat. 52, 7377 (2014).

    Article  Google Scholar 

  19. H. Ruisheng, L. Chun, W. Xin, S. Yan, J. Haixia, S. Haiquan, and Z. Yulong, Catal. Commun. 29, 35 (2012).

    Article  Google Scholar 

  20. S. Chanda, S. Saha, A. Dutta, B. Irfan, R. Chatterjee, and T.P. Sinha, JALCOM 649, 1260 (2015).

    Google Scholar 

  21. T.G. Ho, T.D. Ha, Q.N. Pham, H.T. Giang, T.A.T. Do, and N.T. Nguyen, Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 015012 (2011).

    Article  Google Scholar 

  22. MdS Sheikh, D. Ghosh, A. Dutta, S. Bhattacharyya, and T.P. Sinha, Mater. Sci. Eng. B 226, 10 (2017).

    Article  Google Scholar 

  23. N. Zhang, D. Chen, F. Niu, S. Wang, L. Qin, and Y. Huang, Sci. Rep. 6, 26467 (2016).

    Article  Google Scholar 

  24. J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi 15, 627 (1966).

    Article  Google Scholar 

  25. E.A. Davis and N.F. Mott, Philos. Mag. 22, 903 (1970).

    Article  Google Scholar 

  26. L. Li, X. Wang, Y. Lan, W. Gu, and S. Zhang, Ind. Eng. Chem. Res. 52, 9130 (2013).

    Article  Google Scholar 

  27. S.S. Ma, R. Li, C.P. Lv, W. Xu, and X.L. Gou, J. Hazard. Mater. 192, 730 (2011).

    Article  Google Scholar 

  28. L. Li, M. Zhang, P. Tian, W. Gu, and X. Wang, Cer. Int. 40, 13813 (2014).

    Article  Google Scholar 

  29. Y. Yao, Y.G.H. Li, S. Ciston, R.M. Lueptow, and K.A. Gray, Environ. Sci. Technol. 42, 4952 (2008).

    Article  Google Scholar 

  30. J. Liqianga, Q. Yichuna, W. Baiqia, L. Shudana, J. Baojianga, Y. Libina, F. Weia, F. Hongganga, and S. Jiazhong, Sol. Energy Mater. Sol. Cells 90, 1773 (2006).

    Article  Google Scholar 

  31. S.J. Hong, S. Lee, J.S. Jang, and J.S. Lee, Energy Environ. Sci. 4, 1781 (2011).

    Article  Google Scholar 

  32. R. Guo, R.L. Fang, W. Dong, F. Zheng, and M. Shen, J. Phys. Chem. C 114, 21390 (2010).

    Article  Google Scholar 

  33. J. Wang, Y. Wei, J. Zhang, L. Ji, Y. Huang, and Z. Chen, Mater. Lett. 124, 242 (2014).

    Article  Google Scholar 

  34. Q. Peng, B. Shan, Y. Wen, and R. Chen, Int. J. Hydrog. Energy 40, 15423 (2015).

    Article  Google Scholar 

  35. J.K. Reddy, B. Srinivas, V.D. Kumari, and M. Subrahmanyam, Chem. Cat. Chem. 1, 492 (2009).

    Google Scholar 

  36. S. Wu, J. Fang, X. Xu, Z. Liu, X. Zhu, and W. Xu, Photochem. Photobiol. 88, 1205 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

Ritwik Maity and Md. Sariful Sheikh acknowledge the Department of Science and Technology, Government of India for providing the financial support through the Inspire Fellowship (IF160046 and IF150220, respectively). Alo Dutta thanks the Department of Science and Technology of India for providing the financial support through the DST Fast Track Project under Grant no. SR/FTP/PS-175/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritwik Maity.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 613 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, R., Sheikh, M.S., Dutta, A. et al. Visible Light Driven Photocatalytic Activity of Granular Pr Doped LaFeO3. J. Electron. Mater. 48, 4856–4865 (2019). https://doi.org/10.1007/s11664-019-07285-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07285-5

Keywords

Navigation