Skip to main content

Advertisement

Log in

Preparation and Characterization of Submicron Star-Like ZnO as Light Scattering Centers for Combination with ZnO Nanoparticles for Dye-Sensitized Solar Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Submicron star-like ZnO (ZnO SZ) was synthesized via a facile hydrothermal method, and a series of composite photoanode materials with different ZnO SZ concentrations in the range from 0 wt.% to 0.20 wt.% were synthesized by a mechanical mixing method. The as-prepared samples were characterized by x-ray diffraction analysis, scanning electron microscopy, ultraviolet–visible (UV–Vis) absorption spectroscopy, etc. The results clearly showed that the mean diameter of the ZnO SZ was approximately 300 nm while its length was in the micrometer range, and the ZnO SZ was embedded homogeneously into the ZnO nanoparticle photoanode. Although UV–Vis spectral analysis revealed that increasing the ZnO SZ content decreased the dye adsorption density of the composite photoanode, the photocurrent density–voltage (JV) characteristic indicated that dye-sensitized solar cells (DSSCs) using the ZnO SZ/ZnO composite photoelectrode exhibited significantly improved photovoltaic performance compared with those using pure ZnO nanoparticles. Electrochemical measurements revealed that DSSCs using 0.10 wt.% ZnO SZ showed improved efficiency of light energy conversion of 1.38%, being 43.75% higher than when using pure ZnO. All these results prove that incorporation of ZnO SZ into the ZnO nanoparticle photoelectrode represents a highly effective method for improving the photovoltaic properties of DSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. O’Regan and M. Grätzel, Nature 353, 737 (1991).

    Article  Google Scholar 

  2. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, J. Photochem. Photobiol. C 4, 145 (2010).

    Google Scholar 

  3. K.-T. Dembele, R. Nechache, L. Nikolova, A. Vomiero, C. Santato, S. Licoccia, and F. Rosei, J. Power Sources 233, 93 (2013).

    Article  Google Scholar 

  4. Q. Zhang, C.-S. Dandeneau, X. Zhou, and G. Cao, Adv. Mater. 21, 4087 (2009).

    Article  Google Scholar 

  5. E.-M. Kaidashev, M. Lorenz, H.-W. Von, J. Lenzner, G. Benndorf, A. Rahm, H.-C. Semmelhack, K.-H. Han, H. Hochmuth, and C. Bundesmann, Appl. Phys. Lett. 82, 3901 (2003).

    Article  Google Scholar 

  6. L. Matt, E. Greene, J.C. Johnson, S. Richard, and Y. Peidong, Nat. Mater. 455, 4 (2005).

    Google Scholar 

  7. P.-S. Archana, R. Jose, C. Vijila, and S. Ramakrishna, J. Phys. Chem. C 113, 21538 (2009).

    Article  Google Scholar 

  8. Z. Liu, C. Liu, Y. Jing, and E. Lei, Solid State Sci. 12, 111 (2010).

    Article  Google Scholar 

  9. Y. Meng, Y. Lin, and J. Yang, Appl. Surf. Sci. 268, 561 (2013).

    Article  Google Scholar 

  10. Y.-F. Hsu, Y.-Y. Xi, A.-B. Djurišić, and W.-K. Chan, Appl. Phys. Lett. 92, 133507 (2008).

    Article  Google Scholar 

  11. D. Sabba, N. Mathews, J. Chua, S.-S. Pramana, H.-K. Mulmudi, Q. Wang, and S.-G. Mhaisalkar, Scr. Mater. 68, 487 (2013).

    Article  Google Scholar 

  12. X. Chen, Q. Du, Y. Wen, W. Liu, Z. Miao, and P. Yang, J. Solid State Electrochem. 685, 1 (2017).

    Google Scholar 

  13. C.-Y. Jiang, X.-W. Sun, G.-Q. Lo, and D.-L. Kwong, Appl. Phys. Lett. 90, 547 (2007).

    Google Scholar 

  14. L. Bahadur and S. Kushwaha, J. Solid State Electrochem. 17, 2001 (2013).

    Article  Google Scholar 

  15. Q. Chen and D. Xu, J. Phys. Chem. C 113, 6310 (2009).

    Article  Google Scholar 

  16. L. Guo, X. Wang, Z. Hui, and L. Li, Ceram. Int. 39, S633 (2013).

    Article  Google Scholar 

  17. H. Yu, Z. Zhang, M. Han, X. Hao, and F. Zhu, J. Am. Chem. Soc. 127, 2378 (2005).

    Article  Google Scholar 

  18. I. Iwantono, W. Nurwidya, L.-R. Lestari, F.-Y. Naumar, S. Nafisah, A.-A. Umar, M.-Y.-A. Rahman, and M.-M. Salleh, J. Solid State Electrochem. 19, 1217 (2015).

    Article  Google Scholar 

  19. Y. Waghadkar, M. Shinde, R. Ballal, S. Rane, S. Gosavi, and R. Chauhan, J. Solid State Electrochem. 21, 1797 (2017).

    Article  Google Scholar 

  20. Q. Wang, S. Ito, M. Grätzel, F. Fabregatsantiago, I. Moraseró, J. Bisquert, T. Bessho, and H. Imai, J. Phys. Chem. B 110, 25210 (2006).

    Article  Google Scholar 

  21. S. Nakade, Y. Saito, W. Kubo, T. Kanzaki, T. Kitamura, A.Y. Wada, and S. Yanagida, J. Phys. Chem. B 108, 1628 (2004).

    Article  Google Scholar 

  22. M. Zukalová, A. Zukal, L. Kavan, M.-K. Nazeeruddin, P. Liska, and M. Grätzel, Nano Lett. 5, 1789 (2005).

    Article  Google Scholar 

  23. R. Yu, C. Pan, J. Chen, G. Zhu, and Z.-L. Wang, Adv. Funct. Mater. 23, 5868 (2013).

    Article  Google Scholar 

  24. N. Zhang, J. Chen, Y. Huang, W. Guo, J. Yang, J. Du, X. Fan, and C. Tao, Adv. Mater. 28, 263 (2016).

    Article  Google Scholar 

  25. J. Chen, Y. Huang, N. Zhang, H. Zou, R. Liu, C. Tao, X. Fan, and Z.-L. Wang, Nat. Energy 1, 16138 (2016).

    Article  Google Scholar 

  26. J. Chen and Z.-L. Wang, Joule 1, 480 (2017).

    Article  Google Scholar 

  27. L. Lin, M. Yeh, C. Lee, C. Chou, R. Vittal, and K. Ho, Electrochim. Acta 62, 341 (2012).

    Article  Google Scholar 

  28. Z. Zarghami, M. Ramezani, and K. Motevalli, J. Clust. Sci. 27, 1451 (2016).

    Article  Google Scholar 

  29. Z. Huang, Y. Dou, K. Wan, F. Wu, L. Fang, H. Ruan, B. Hu, F. Meng, and M. Liao, J. Mate. Sci. Mater. Electron. 28, 17414 (2017).

    Article  Google Scholar 

  30. K. Wan, F. Wu, Y. Dou, L. Fang, and C. Mao, J. Alloys Compd. 680, 373 (2016).

    Article  Google Scholar 

  31. X. He, H. Zhang, W. Lin, R. Wei, J. Qiu, M. Zhang, and B. Hu, Sci. Rep-Uk. 5, 15868 (2015).

    Article  Google Scholar 

  32. D. Zhao, T. Peng, L. Lu, C. Ping, J. Ping, and Z. Bian, J. Phys. Chem. C 112, 8486 (2008).

    Article  Google Scholar 

  33. L.-F.-J. Schneider, C.-S.-C. Pfeifer, S.-A. Prahl, J.-L. Ferracane, and S. Consani, Dent. Mater. 24, 1169 (2008).

    Article  Google Scholar 

  34. O. Wiranwetchayan, W. Promnopas, K. Hongsith, S. Choopun, P. Singjai, and S. Thongtem, Res. Chem. Intermed. 42, 1 (2015).

    Google Scholar 

  35. Q. Zhang, T.-P. Chou, B. Russo, S.-A. Jenekhe, and G. Cao, Angew. Chem. Int. Ed. 47, 2402 (2008).

    Article  Google Scholar 

  36. W.-G. Yang, F.-R. Wan, Q.-W. Chen, J.-J. Li, and D.-S. Xu, J. Mater. Chem. 20, 2870 (2010).

    Article  Google Scholar 

  37. Z. Haimin, H. Yanhe, L. Xiaolu, L. Porun, Y. Hua, Z. Shanqing, Y. Xiangdong, and Z. Huijun, Chem. Commun. 46, 8395 (2010).

    Article  Google Scholar 

  38. X. He, X. Li, and M. Zhu, J. Power Sources 333, 10 (2016).

    Article  Google Scholar 

  39. W. Zhang, J. Gu, S. Yao, and H. Wang, J. Mater. Sci. Mater. Electron. 29, 7356 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of Tianjin (No. 11JCYBJC01900). The authors thank all those who contributed to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Chang, S., Yao, S. et al. Preparation and Characterization of Submicron Star-Like ZnO as Light Scattering Centers for Combination with ZnO Nanoparticles for Dye-Sensitized Solar Cells. J. Electron. Mater. 48, 4895–4901 (2019). https://doi.org/10.1007/s11664-019-07278-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07278-4

Keywords

Navigation