Skip to main content

Advertisement

Log in

Enhancing the performance of dye-sensitized solar cells by ZnO nanorods/ZnO nanoparticles composite photoanode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, ZnO nanorods (NRs) were prepared by a two-step solution phase reaction. A composite photoanode architecture is fabricated by adding 0–0.20 at.% ZnO NRs into ZnO nanoparticles (NPs). The scanning electron microscopy image shows that the average diameter and length of the ZnO NRs are about 50 nm and 2–5 µm, respectively, and the ZnO NRs are uniformly embedded into the ZnO NPs photoanode. The UV–vis spectrum analysis reveals that the amount of dye adsorption of the composite photoanode decreases with increasing ZnO NRs content. Meanwhile, the influence of ZnO NRs contents on the dye-sensitized solar cells (DSSCs) performance is systematically investigated. The photocurrent density–voltage (J–V) characteristics reveal that the device performance of DSSCs can be significantly enhanced by the composite photoanode. Typically, the DSSC with 0.15 at.% ZnO NRs obtains the optimal energy conversion efficiency of 3.8%, which is 28.4% higher than that of the pristine ZnO DSSCs. The electrochemical impedance spectroscopy (EIS) analysis shows that ZnO NRs can provide a direct pathway for accelerating electron transport, extending the electron lifetime, suppressing electron recombination and improving electron collection efficiency. These results indicate that the incorporation of ZnO NRs in the photoanode is an effective way to improve the performance of DSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. O’regan, M. Gratzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  2. U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Nature 395, 583 (1998)

    Article  Google Scholar 

  3. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L.Y. Han, Jpn. J. Appl. Phys. 45, 24 (2006)

    Article  Google Scholar 

  4. Y.H. Luo, D.M. Li, Q.B. Meng, Adv. Mater. 21, 4647 (2009)

    Article  Google Scholar 

  5. E.M. Kaidashev, M. Lorenz, H. Von Wenckstern, A. Rahm, H.C. Semmelhack, K.H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, Appl. Phys. Lett. 82, 3901 (2003)

    Article  Google Scholar 

  6. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, 455 (2005)

    Article  Google Scholar 

  7. P.S. Archana, R. Jose, C. Vijila, S. Ramakrishna, J. Phys. Chem. C 113, 21538 (2009)

    Article  Google Scholar 

  8. T. Dittrich, E.A. Lebedve, J. Weidmann, Phys. Status Solidi A 167, 5 (1998)

    Article  Google Scholar 

  9. Q.F. Zhang, C.S. Dandeneau, X.Y. Zhou, G.Z. Cao, Adv. Mater. 21, 4087 (2009)

    Article  Google Scholar 

  10. Z.L.S. Seow, A.S.W. Wong, V. Thavasi, R. Jose, S. Ramakrishna, G.W. Ho, Nanotechnology 20, 045604 (2009)

    Article  Google Scholar 

  11. J.B. Baxter, A.M. Walker, K. van Ommering, E.S. Aydil, Nanotechnology 17, S304 (2006)

    Article  Google Scholar 

  12. J. Han, F. Fan, C. Xu, S. Lin, M. Wei, X. Duan, Z.L. Wang, Nanotechnology 21, 405203 (2010)

    Article  Google Scholar 

  13. S. Rani, P.K. Shishodia, R.M. Mehra, J. Renew. Sustain. Energy 2, 043103 (2010)

    Article  Google Scholar 

  14. P. Suri, R.M. Mehra, Sol. Energy Mater. Sol. Cells 91, 518 (2007)

    Article  Google Scholar 

  15. Y. Bai, H. Yu, Z. Li, R. Amal, G.Q. Lu, L.Z. Wang, Adv. Mater. 24, 5850 (2012)

    Article  Google Scholar 

  16. G. Redmond, D. Fitzmaurice, M. Graetzel, Chem. Mater. 6, 686 (1994)

    Article  Google Scholar 

  17. S. Rani, P. Suri, P. Shishodia, R. Mehra, Sol. Energy Mater. Sol. Cells 92, 1639 (2008)

    Article  Google Scholar 

  18. H. Lu, X.Y. Zhai, W.W. Liu, M. Zhang, M. Guo, Thin Solid Films 586, 46 (2015)

    Article  Google Scholar 

  19. M. Guo, P. Diao, S.M. Cai, Chin. Chem. Lett. 15, 1113 (2004)

    Google Scholar 

  20. Y.F. Gao, M. Nagai, T.C. Chang, J.J. Shyue, Cryst. Growth Des. 7, 2467 (2007)

    Article  Google Scholar 

  21. L.Y. Lin, M.H. Yeh, C.P. Lee, C.Y. Chou, R. Vittal, K.C. Ho, Electrochim. Acta 62, 341 (2012)

    Article  Google Scholar 

  22. T. Bai, Y.H. Xie, J. Hu, C.Y. Zhang, J. Wang, J. Alloy. Compd. 644, 350 (2015)

    Article  Google Scholar 

  23. Z. Zarghami, M. Ramezani, K. Motevalli, J. Cluster Sci. 27, 1451 (2016)

    Article  Google Scholar 

  24. D. Zhao, T.Y. Peng, L.L. Lu, P. Cai, P. Jiang, Z.Q. Bian, J. Phys. Chem. C 112, 8486 (2008)

    Article  Google Scholar 

  25. L.F.J. Schneider, C.S.C. Pfeifer, S. Consani, S.A. Prahl, J.L. Ferracane, Dent. Mater. 24, 1169 (2008)

    Article  Google Scholar 

  26. M.H. Zhu, X. Li, W.W. Liu, Y. Cui, J. Power Sources 262, 349 (2014)

    Article  Google Scholar 

  27. X. Zhang, V. Thavasi, S.G. Mhaisalkar, S. Ramakrishna, Nanoscale 4, 1707 (2012)

    Article  Google Scholar 

  28. Y.H. Lai, C.Y. Lin, H.W. Chen, J.G. Chen, C.W. Kung, R. Vittal, K.C. Ho, J. Mater. Chem. 20, 9379 (2010)

    Article  Google Scholar 

  29. J. Chen, C. Li, D.W. Zhao, W. Lei, Y. Zhang, M.T. Cole, D.P. Chu, B.P. Wang, Y.P. Cui, X.W. Sun, W.I. Milne, Electrochem. Commun. 12, 1432 (2010)

    Article  Google Scholar 

  30. J. Bisquert, Phys. Chem. Chem. Phys. 5, 5360 (2003)

    Article  Google Scholar 

  31. J. Jamnik, J. Maier, Phys. Chem. Chem. Phys. 3, 1668 (2001)

    Article  Google Scholar 

  32. A. Omar, H. Abdullah, Renew. Sustain Energy Rev. 31, 149 (2014)

    Article  Google Scholar 

  33. Y. Xie, P. Joshi, S.B. Darling, Q. Chen, T. Zhang, D. Galipeau, Q. Qiao, J. Phys. Chem. C 114, 17880 (2010)

    Article  Google Scholar 

  34. M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, J. Phys. Chem. B 110, 13872 (2006)

    Article  Google Scholar 

  35. H. Abdullah, N.P. Ariyanto, B. Yuliarto, I. Asshaari, A. Omar, M.Z. Razali, Ionics 21, 251 (2015)

    Article  Google Scholar 

  36. J.J. Qiu, F.W. Zhuge, K. Lou, X.M. Li, X.D. Gao, X.Y. Gan, W.D. Yu, H.K. Kim, Y.H. Hwang, J. Mater. Chem. 21, 5062 (2011)

    Article  Google Scholar 

  37. K. Fan, T.Y. Peng, J.N. Chen, K. Dai, J. Power Sources 196, 2939 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation of the State Key Laboratory of Mechanical Transmission of Chongqing University under Grant Nos. SKLMT-ZZKT-2017M15, SKLMT-KFKT-201419 and SKLM-ZZKT-2015Z16, the Foundation of Chongqing Key Laboratory of Micro/Nano Materials Engineering and Technology under Grant No. KF201608, the National High-Technology Research and Development Program of China (“863 Plan”) under Grant No. 2015AA034801, the National Natural Science Foundation of China under Grant Nos 11304405,11374359 and 11544010, the Natural Science Foundation of Chongqing under Grant Nos cstc2013jcyjA50031, cstc2015jcyjA50035 and cstc2015jcyjA1660, the Fundamental Research Funds for the Central Universities under Grant Nos 106112017CDJQJ328839, 106112016CDJZR-288805 and 106112015CDJXY300 002, and the Sharing Fund of Large-scale Equipment of Chongqing University under Grant Nos 201606150016, 201606150017 and 201606150056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Dou, Y., Wan, K. et al. Enhancing the performance of dye-sensitized solar cells by ZnO nanorods/ZnO nanoparticles composite photoanode. J Mater Sci: Mater Electron 28, 17414–17420 (2017). https://doi.org/10.1007/s10854-017-7675-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7675-y

Navigation