Skip to main content
Log in

Structural, Optical, and Magnetic Properties of Co-Doped SnO2 Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cobalt-doped SnO2 nanoparticles with different cobalt concentrations have been prepared using a polyol method, and x-ray diffraction (XRD) analysis and Fourier-transform infrared spectroscopy applied to investigate their structure. The XRD patterns of all the prepared nanoparticles revealed single-phase tetragonal structure. The morphology of the nanoparticles was studied using scanning electron microscopy. Ultraviolet–visible absorbance spectroscopy measurements were utilized to understand the optical properties, revealing the dependence of the bandgap on the cobalt doping concentration. Magnetic measurements revealed that the samples exhibited room-temperature ferromagnetism, which should be an intrinsic characteristic. The origin of the room-temperature ferromagnetism was investigated using vibrating-sample magnetometry and electron spin resonance spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Das and V. Jayaraman, Prog. Mater. Sci. 66, 112 (2014). https://doi.org/10.1016/j.pmatsci.2014.06.003.

    Article  Google Scholar 

  2. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).

    Article  Google Scholar 

  3. A. Punnoose, K. Dodge, J.J. Beltrán, K.M. Reddy, N. Franco, J. Chess, J. Eixenberger, and C.A. Barrero, J. Appl. Phys. 115, 17B534 (2014).

    Article  Google Scholar 

  4. S. Ferrari, L.G. Pampillo, and F.D. Saccone, Mater. Chem. Phys. 177, 206 (2016).

    Article  Google Scholar 

  5. R.K. Zulfiqar, Y. Yuan, Z. Iqbal, J. Yang, W. Wang, Z. Ye, and J. Lu, J. Mater. Sci. Mater. Electron. 28, 4625 (2017).

    Article  Google Scholar 

  6. Y. Li, W. Yin, R. Deng, R. Chen, J. Chen, Q. Yan, B. Yao, H. Sun, S.H. Wei, and T. Wu, NPG Asia Mater. 4, 1 (2012).

    Article  Google Scholar 

  7. R. Pushpa, P. Kumar, B. Ramanujam, and A. Punnoose, J. Magn. Magn. Mater. 407, 46 (2016).

    Article  Google Scholar 

  8. R. Adhikari, A.K. Das, D. Karmakar, T.V. Chandrasekhar Rao, and J. Ghatak, Phys. Rev. B 78, 024404 (2008).

    Article  Google Scholar 

  9. M. Ghalkhani, B. Hosseininia, J. Beheshtian, and A.A. Firooz, J. Mater. Sci. Mater. Electron. 28, 7568 (2017). https://doi.org/10.1007/s10854-017-6448-y.

    Article  Google Scholar 

  10. M.S. Pereira, T.S. Ribeiro, F.A.S. Lima, L.P.M. Santos, C.B. Silva, P.T.C. Freire, and I.F. Vasconcelos, J. Nanopart. Res. 20, 212 (2018).

    Article  Google Scholar 

  11. C. Zhang and J. Lin, Chem. Soc. Rev. 41, 7938 (2012).

    Article  Google Scholar 

  12. L.M. Fang, X.T. Zu, Z.J. Li, S. Zhu, C.M. Liu, L.M. Wang, and F. Gao, J. Mater. Sci. Mater. Electron. 19, 868 (2008).

    Article  Google Scholar 

  13. M.P. Rajeeva, C.S. Naveen, A.R. Lamani, and H.S. Jayanna, J. Mater. Sci. Mater. Electron. 28, 16348 (2017). https://doi.org/10.1007/s10854-017-7542-x.

    Article  Google Scholar 

  14. A.S. Ahmed, S.M. Muhamed, M.L. Singla, S. Tabassum, A.H. Naqvi, and A. Azam, J. Lumin. 131, 1 (2011). https://doi.org/10.1016/j.jlumin.2010.07.017.

    Article  Google Scholar 

  15. M. Garcia-Tecedor, D. Maestre, A. Cremades, and J. Piqueras, J. Phys. Chem. C 120, 22028 (2016).

    Article  Google Scholar 

  16. B. Cojocaru, D. Avram, V. Kessler, V. Parvulescu, G. Seisenbaeva, and C. Tiseanu, Sci. Rep. 7, 9598 (2017).

    Article  Google Scholar 

  17. M. Yehia, Sh. Labib, and S.M. Ismail, Phys. B Condens. Matter 446, 49 (2014).

    Article  Google Scholar 

  18. M. Bortolotti, L. Lutterotti, and I. Lonardelli, J. Appl. Cryst. 42, 538 (2009).

    Article  Google Scholar 

  19. J. Gajendiran and V. Rajendran, Optoelectron. Adv. Mater. 5, 44 (2011).

    Google Scholar 

  20. R. Yogamalar, V. Mahendran, R. Srinivasan, A. Beitollahi, R.P. Kumar, A. Chandra Bose, and A. Vinutures, Chem. Asian J. 5, 2379 (2010).

    Article  Google Scholar 

  21. R. Hu, Y. Ouyang, T. Liang, H. Wang, J. Liu, J. Chen, C. Yang, L. Yang, and M. Zhu, Adv. Mater. 29, 1605006 (2017).

    Article  Google Scholar 

  22. M. Faisal, A.A. Ibrahim, F.A. Harraz, H. Bouzid, M.S. Al-Assiri, and A.A. Ismail, J. Mol. Catal. A Chem. 397, 19 (2015).

    Article  Google Scholar 

  23. A.M. Ungureanu, O. Oprea, B.S. Vasile, C. Andronescu, G. Voicu, I. Jitaru, and T. Cent, Eur. J. Chem. 12, 909 (2014). https://doi.org/10.2478/s11532-013-0400-7.

    Google Scholar 

  24. S.A. Saleh, A.A. Ibrahim, and S.H. Mohamed, Acta Phys. Pol. A 129, 1220 (2016).

    Article  Google Scholar 

  25. Sh. Labib, J. Saudi Chem. Soc. 21, 664 (2017).

    Article  Google Scholar 

  26. J. Jiang, Y. Lu, B.K. Meyer, D.M. Hofmann, and M. Eickhoff, J. Appl. Phys. 119, 245703 (2016).

    Article  Google Scholar 

  27. M. Weidner, Fermi Level Determination in Tin Oxide by Photoelectron Spectroscopy: Relation to Optoelectronic Properties; Band Bending at Surfaces and Interfaces; Modulation Doping, Ph.D. Thesis to TU Darmstadt (2015).

  28. A. Abdelkrim, S. Rahmane, O. Abdelouahab, N. Abdelmalek, and G. Brahim, Optik 127, 2653 (2016).

    Article  Google Scholar 

  29. A.M. Ganose and D.O. Scanlon, J. Mater. Chem. C 4, 1467 (2016).

    Article  Google Scholar 

  30. X. Yu-Jing, G. Zi-Sheng, and H. Tao, Chin. Phys. B 23, 087701 (2014).

    Article  Google Scholar 

  31. T.B. Ivetić, M.R. Dimitrievska, N.L. Finčur, Lj.R. Dačanin, I.O. Gśth, B.F. Abramović, and S.R. Lukić-Petrović, Ceram. Int. 40, 1545 (2014).

    Article  Google Scholar 

  32. H. Wafula, A. Juma, T. Sakwa, R. Musembi, and J. Simiyu, Coatings 6, 30 (2016).

    Article  Google Scholar 

  33. S.S. Kim, H.G. Na, H.W. Kim, V. Kulishand, and P. Wu, Sci. Rep. 5, 10723 (2015).

    Article  Google Scholar 

  34. X. Li, R. Deng, Y. Li, B. Yao, Z. Ding, J. Qin, and Q. Liang, Ceram. Int. 42, 5299 (2016).

    Article  Google Scholar 

  35. A. Janotti, J.B. Varley, J.L. Lyons, and C.G. Van de Walle, Controlling the Conductivity in Oxide Semiconductors, ed. J. Wu, J. Cao, W.-Q. Han, A. Janotti, and H.C. Kim (Berlin: Springer, 2012), p. 23.

    Google Scholar 

  36. A.K. Singh, A. Janotti, M. Scheffler, and C.G. Van de Walle, Phys. Rev. Lett. 101, 055502 (2008).

    Article  Google Scholar 

  37. V.B. Kamble and A.M. Umarji, AIP Adv. 3, 082120 (2013).

    Article  Google Scholar 

  38. D.B. Granato, J.A. Caraveo-Frescas, H.N. Alshareef, and U. Schwingenschl Ögl, Appl. Phys. Lett. 102, 212105 (2013).

    Article  Google Scholar 

  39. R. Singh, M. Kumar, S. Shankar, R. Singh, A.K. Ghosh, O.P. Thakur, and B. Das, Mater. Sci. Semicond. Process. 31, 310 (2015).

    Article  Google Scholar 

  40. E. Mokaripoor and M.-M. Bagheri-Mohagheghi, Mater. Sci. Semicond. Process. 30, 400 (2015).

    Article  Google Scholar 

  41. J.J.J. Carey, M. Legesse, and M. Nolan, J. Phys. Chem. C 120, 19160 (2016).

    Article  Google Scholar 

  42. B. Pal and P.K. Giri, J. Nanosci. Nanotechnol. 11, 9167 (2011).

    Article  Google Scholar 

  43. E. Swatsitang, S. Phokha, S. Hunpratub, and S. Maensiri, Phys. B Condens. Matter 485, 14 (2016).

    Article  Google Scholar 

  44. T. Debnath, S. Das, D. Das, and S. Sutradhar, J. Alloys Compd. 696, 670 (2017).

    Article  Google Scholar 

  45. A. Bandyopadhyay, S. Sutradhar, B.J. Sarkar, A.K. Deb, and P.K. Chakrabarti, Appl. Phys. Lett. 100, 252411 (2012). https://doi.org/10.1063/1.4729386.

    Article  Google Scholar 

  46. S. Shi, D. Gao, X. Qiang, Z. Yang, and D. Xue, RSC Adv. 4, 45467 (2014).

    Article  Google Scholar 

  47. K.G. Godinho, A. Walsh, and G.W. Watson, J. Phys. Chem. C 113, 439 (2009). https://doi.org/10.1021/jp807753t.

    Article  Google Scholar 

  48. A. Möller, T. Taetz, N. Hollmann, J.A. Mydosh, V. Kataev, M. Yehia, E. Vavilova, and B. Büchner, Phys. Rev. B 76, 134411 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yehia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yehia, M., Labib, S. & Ismail, S.M. Structural, Optical, and Magnetic Properties of Co-Doped SnO2 Nanoparticles. J. Electron. Mater. 48, 4170–4178 (2019). https://doi.org/10.1007/s11664-019-07179-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07179-6

Keywords

Navigation