Skip to main content
Log in

Effect of Co3+ substitution on the structural, optical, and room-temperature magnetic properties of SnO2 nanoparticulates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To investigate the contribution of cobalt in initiating room-temperature ferromagnetism in SnO2 nanocrystals, the structural, optical, and magnetic behaviors of Co-doped SnO2 nanoparticulates with different dopant concentrations were examined. The structures of the samples were confirmed to be tetragonal and the shift in diffraction peaks as well as reductions in lattice parameters confirmed the incorporation of Co3+ ions into the SnO2 lattice. The diffuse reflectance spectroscopy data reveal the augmentation of absorption to upper wavelength and a decrease in energy bandgap was also observed. Co-doped samples revealed room-temperature ferromagnetism with a small contribution of paramagnetic ordering, which disappears with increase in dopant concentration. An increase in the Co content leads to a rapid increase in the saturation magnetization of the system whereas the coercivity seems to be almost constant for all the Co-doped SnO2 nanoparticles. The ferromagnetic properties of the synthesized samples depend on the distribution of defects, nanometric size, as well as the surface diffusion of Co ions on the tin oxide nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Gemming, M. Schreiber, J.-B. Suck (eds.), Materials for Tomorrow: Theory, Experiments and Modelling, vol. 93 (Springer, Berlin, 2007)

    Google Scholar 

  2. K. Srinivas, M. Vithal, B. Sreedhar, M. Manivel Raja, P. Venugopal Reddy, J. Phys. Chem. C 113, 3543 (2009)

    Article  CAS  Google Scholar 

  3. S. Ravi, F. Winfred Shashikanth, Mater. Lett. 264, 127331 (2020)

    Article  CAS  Google Scholar 

  4. N.D. Dung, C.T. Son, P.V. Loc, N.H. Cuong, P.T. Kien, P.T. Huy, N.N. Ha, J. Alloys Compd. 668, 87 (2016)

    Article  Google Scholar 

  5. R.A. Torquato, S.E. Shirsath, R.H.G.A. Kiminami, A.C.F.M. Costa, Ceram. Int. 44, 4126 (2018)

    Article  CAS  Google Scholar 

  6. L. Yibing, Y. Li, M. Zhu, T. Yang, J. Huang, H. Jin, Y. Hu, Solid State Commun. 150, 751 (2010)

    Article  Google Scholar 

  7. S. Chawla, K. Jayanthi, R.K. Kotnala, Phys. Rev. B 79, 125204 (2009)

    Article  Google Scholar 

  8. S. Pattanaik, B. Biswal, U. Routray, J. Mohapatra, V.V. Srinivasu, D.K. Mishra, Mater. Today: Proc. 35, 141 (2020)

    Google Scholar 

  9. J.M.D. Coey, Curr. Opin. Solid State Mater. Sci. 10, 83 (2006)

    Article  CAS  Google Scholar 

  10. A. Bouaine, N. Brihi, G. Schmerber, C. Ulhaq-Bouillet, S. Colis, A. Dinia, J. Phys. Chem. C 111, 2924 (2007)

    Article  CAS  Google Scholar 

  11. A. Punnoose, J. Hays, V. Gopal, V. Shutthanandan, Appl. Phys. Lett. 85, 1559 (2004)

    Article  CAS  Google Scholar 

  12. C.B. Fitzgerald, M. Venkatesan, A.P. Douvalis, S. Huber, J.M.D. Coey, T. Bakas, J. Appl. Phys. 95, 7390 (2004)

    Article  CAS  Google Scholar 

  13. C.M. Liu, X.T. Zu, W.L. Zhou, J. Condens. Matter Phys. 18, 6001 (2006)

    Article  CAS  Google Scholar 

  14. A. Ali, A.K. Sarfraz, K. Ali, A. Mumtaz, J. Magn. Magn. 391, 161 (2015)

    Article  CAS  Google Scholar 

  15. J. Kaur, J. Shah, R.K. Kotnala, K.C. Verma, Ceram. Int. 38, 5563 (2012)

    Article  CAS  Google Scholar 

  16. H. Uchiyama, Y. Shirai, H. Kozuka, J. Cryst. Growth. 319, 70 (2011)

    Article  CAS  Google Scholar 

  17. B.G. Pawar, D.V. Pinjari, S.S. Kolekar, A.B. Pandit, S.H. Han, Int. Sch. Res. Netw 2012, 954869 (2012)

    Google Scholar 

  18. R. Rajan, R. Ezhil Vizhi, J. Supercond. Nov. Magn. 30, 3199 (2017)

    Article  CAS  Google Scholar 

  19. S. Nilavazhagan, S. Muthukumaran, M. Ashokkumar, Opt. Mater. 37, 425 (2014)

    Article  CAS  Google Scholar 

  20. S. Muthukumaran, R. Gopalakrishnan, Phys. B Condens. Matter. 407, 3448 (2012)

    Article  CAS  Google Scholar 

  21. A. Khorsand Zak, W.H. Abd Majid, M. Ebrahimizadeh Abrishami, R. Yousefi, Solid State Sci. 13, 251 (2011)

    Article  CAS  Google Scholar 

  22. B. Keimer, Acta Crystallogr. Sect. B: Struct. Sci. Cryst. Eng. Mater. 72, 283 (2016)

    Article  CAS  Google Scholar 

  23. I. Nakai, M. Sasano, K. Inui, T. Korekawa, H. Ishijima, H. Katoh, Y.J. Li, M. Kurisu, J. Korean Phys. Soc. 63, 532 (2013)

    Article  CAS  Google Scholar 

  24. J. Kanamori, J. Phys. Chem. Solids 10, 87 (1959)

    Article  CAS  Google Scholar 

  25. J.B. Goodenough, Phys. Rev. 100, 564 (1955)

    Article  CAS  Google Scholar 

  26. D.A. Popescu, H. Jean-Marie, E. Alain, B.-V. François, Phys. Chem. Chem. Phys. 3, 2522 (2001)

    Article  Google Scholar 

  27. Z.D. Dohčević-Mitrović, V.D. Araújo, M. Radović, S. Aškrabić, G.R. Costa, M.I.B. Bernardi, D.M. Đokić, B. Stojadinović, M.G. Nikolić, Process. Appl. Ceram. 14, 102 (2020)

    Article  Google Scholar 

  28. Y. Brik, M. Kacimi, M. Ziyad, F. Bozon-Verduraz, J. Catal. 202, 118 (2001)

    Article  CAS  Google Scholar 

  29. E. Brightlin Felcia, K. Dhinakar Gnanam, J. Appl. Phys. 2278, 89 (2017)

    Google Scholar 

  30. K. Srinivas, S. Manjunath Rao, P. Venugopal Reddy, Nanoscale 3, 642 (2011)

    Article  CAS  Google Scholar 

  31. S. Emiroglu, N. Barsan, U. Weimar, V. Hoffmann, Thin Solid Films 391, 176 (2001)

    Article  CAS  Google Scholar 

  32. B. Orel, U. Lavrenčič-Štankgar, Z. Crnjak-Orel, P. Bukovec, M. Kosec, J. Non-Cryst. Solids 167, 272 (1994)

    Article  CAS  Google Scholar 

  33. S. Sambasivam, S.B. Kim, J.H. Jeong, B.C. Choi, K.T. Lim, S.S. Kim, T.K. Song, Curr. Appl. Phys. 10, 1383 (2010)

    Article  Google Scholar 

  34. A.D. Sharma, A.P. Singh, P. Thakur, N.B. Brookes, S. Kumar, C.G. Lee, R.J. Choudhary, K.D. Verma, R. Kumar, J. Appl. Phys. 107, 093918 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the management of Vellore Institute of Technology, Vellore, for their constant support and the characterization facilities provided. The authors are also thankful to SAIF, IIT Madras, for providing VSM measurements and STIC, CUSAT, for carrying out HRTEM/SAED analysis of the synthesized nanoparticles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ezhil Vizhi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajan, R., Vizhi, R.E. Effect of Co3+ substitution on the structural, optical, and room-temperature magnetic properties of SnO2 nanoparticulates. J Mater Sci: Mater Electron 32, 12716–12724 (2021). https://doi.org/10.1007/s10854-021-05906-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05906-6

Navigation