Skip to main content
Log in

Improvement in Photodetection Characteristics of Graphene/p-Silicon Heterojunction Photodetector by PMMA/Graphene Cladding Layer

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work evaluates the photodetection characteristics of graphene/p-silicon (Gr/p-Si) heterojunction photodetector having Polymethyl Methacrylate (PMMA) as cladding layer. The graphene film was deposited on copper (Cu) by using the atmospheric pressure chemical vapor deposition method, whereas the PMMA layer was deposited on the Gr/Cu by the spin coating technique. The fabricated heterojunction was characterized by Raman spectroscopy, UV–visible spectroscopy and field emission scanning electron microscopy. The photodetection characteristics of the heterojunction photodetector were assessed through a current–voltage digital source system (Keithley 2400). The results showed that the addition of PMMA/Gr layer to Gr/p-Si enhanced the photodetection performance of the device upon the incident of light emitting diodes with various wavelengths (395 nm, 405 nm, 470 nm, 605 nm, 625 nm, 880 nm and 940 nm). Among all these wavelengths, light emitting diodes with 470 and 395 nm wavelengths were found to display better photodetection performance. For the 470 nm illumination case, the quantum efficiency and responsivity of the fabricated device were increased by ∼ 7 times, the sensitivity was increased by ∼ 12 times whereas the current gain was increased by ∼ 6 times. The enhancement of quantum efficiency and responsivity is attributed to the use of a PMMA/Gr layer that increased the light absorption, reduced the light reflectivity, changed the graphene band structures and decreased the device dark current. For the case of 395 nm illumination at 5 V, the gain was ∼ 9, the responsivity was ∼ 5.052 A/W and the quantum efficiency was ∼ 15.86 W/A while the sensitivity at 4 V was 650%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.H. Radamson, Graphene, in Springer Handbook of Electronic and Photonic Materials, ed. by S. Kasap, P. Capper (Springer, Cham, 2017). p. 1.

  2. M. Yazdan Mehr, S. Volgbert, W.D. Van Driel, and G.Q. Zhang, J. Electron. Mater. 46, 5866 (2017).

  3. D. Xu, X. Yu, L. Yang, and D. Yang, J. Electron. Mater. 47, 5025 (2018).

    Article  Google Scholar 

  4. N. Karimizadeh, M. Babamoradi, R. Azimirad, and M. Khajeh, J. Electron. Mater. 47, 5452 (2018).

    Article  Google Scholar 

  5. H. Chang and H. Wu, Adv. Funct. Mater. 23, 1984 (2013).

    Article  Google Scholar 

  6. F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, Nat. Photon. 4, 611 (2010).

    Article  Google Scholar 

  7. F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, Nat. Nanotechnol. 9, 780 (2014).

    Article  Google Scholar 

  8. E.J. Lee, S.Y. Choi, H. Jeong, N.H. Park, W. Yim, M.H. Kim, J.-K. Park, S. Son, S. Bae, and S.J. Kim, Nat. Commun. 6, 6851 (2015).

    Article  Google Scholar 

  9. G. Jo, M. Choe, S. Lee, W. Park, Y.H. Kahng, and T. Lee, Nanotechnology 23, 112001 (2012).

    Article  Google Scholar 

  10. A.K. Geim and K.S. Novoselov, The rise of graphene, in Nanoscience and Technology: A Collection of Reviews from Nature Journals. (World Scientific, Singapore, 2010). pp. 11–19.

  11. C.-H. Liu, Y.-C. Chang, T.B. Norris, and Z. Zhong, Nat. Nanotechnol. 9, 273 (2014).

    Article  Google Scholar 

  12. P. Lv, X. Zhang, X. Zhang, W. Deng, and J. Jie, IEEE Electron Device Lett. 34, 1337 (2013).

    Article  Google Scholar 

  13. D. Sinha and J.U. Lee, Nano Lett. 14, 4660 (2014).

    Article  Google Scholar 

  14. C.-C. Chen, M. Aykol, C.-C. Chang, A. Levi, and S.B. Cronin, Nano Lett. 11, 1863 (2011).

    Article  Google Scholar 

  15. Y. Song, X. Li, C. Mackin, X. Zhang, W. Fang, T.S. Palacios, H. Zhu, and J. Kong, Nano Lett. 15, 2104 (2015).

    Article  Google Scholar 

  16. A. Di Bartolomeo, G. Luongo, F. Giubileo, N. Funicello, G. Niu, T. Schroeder, M. Lisker, and G. Lupina, 2D Mater. 4, 025075 (2017).

  17. G. Luongo, A. Di Bartolomeo, F. Giubileo, C.A. Chavarin, and C. Wenger, J. Phys. D Appl. Phys. 51, 255305 (2018).

    Article  Google Scholar 

  18. C. Rattanabut, W. Muangrat, M. Phonyiem, W. Bungjongpru, W. Wongwiriyapan, and Y.J. Song, Mater. Today: Proc. 4, 6397 (2017).

    Google Scholar 

  19. H.J. Jeong, H.Y. Kim, S.Y. Jeong, J.T. Han, K.-J. Baeg, J.Y. Hwang, and G.-W. Lee, Carbon 66, 612 (2014).

    Article  Google Scholar 

  20. R. Abdalrheem, F.K. Yam, A.R. Ibrahim, K. Beh, Y. Ng, F.H.A. Suhaimi, H.S. Lim, M.Z. Mat Jafri, and A.A. Oglat, J. Phy.: Conf. Ser. 1083, 012038 (2018).

  21. Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C.K. Koo, Z. Shen, and J.T. Thong, small 6, 195 (2010).

  22. J.-B. Wu, X. Zhang, M. Ijäs, W.-P. Han, X.-F. Qiao, X.-L. Li, D.-S. Jiang, A.C. Ferrari, and P.-H. Tan, Nat. Commun. 5, 5309 (2014).

    Article  Google Scholar 

  23. S. Shivaraman, M.V.S. Chandrashekhar, J.J. Boeckl, and M.G. Spencer, J. Electron. Mater. 38, 725 (2009).

    Article  Google Scholar 

  24. J. Xie and J.P. Spallas, Agilent Technologies, 1 (2012).

  25. B. Hu, H. Ago, Y. Ito, K. Kawahara, M. Tsuji, E. Magome, K. Sumitani, N. Mizuta, K.-I. Ikeda, and S. Mizuno, Carbon 50, 57 (2012).

    Article  Google Scholar 

  26. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, and A.K. Geim, Science 320, 1308 (2008).

    Article  Google Scholar 

  27. S.K. Behura, S. Nayak, I. Mukhopadhyay, and O. Jani, Carbon 67, 766 (2014).

    Article  Google Scholar 

  28. Y. Jia, X. Gong, P. Peng, Z. Wang, Z. Tian, L. Ren, Y. Fu, and H. Zhang, Nano Micro Lett. 8, 336 (2016).

    Article  Google Scholar 

  29. M. Mohammed, Z. Li, J. Cui, and T.-P. Chen, Nanoscale Res. Lett. 7, 302 (2012).

    Article  Google Scholar 

  30. L. Gammelgaard, J.M. Caridad, A. Cagliani, D.M. Mackenzie, D.H. Petersen, T.J. Booth, and P. Bøggild, 2D Mater. 1, 035005 (2014).

  31. G.B. Barin, Y. Song, I. De Fátima Gimenez, A.G. Souza Filho, L.S. Barreto, and J. Kong, Carbon 84, 82 (2015).

  32. P. Cheng, H. Zhao, J. Bao, L. Wu, D. Li, and D. Yang, JOSA B. 30, 405 (2013).

    Article  Google Scholar 

  33. C. Schinke, P. Christian Peest, J. Schmidt, R. Brendel, K. Bothe, M.R. Vogt, I. Kröger, S. Winter, A. Schirmacher, and S. Lim, AIP Adv. 5, 067168 (2015).

  34. B. Partoens and F. Peeters, Phys. Rev. B. 74, 075404 (2006).

    Article  Google Scholar 

  35. T. Ohta, A. Bostwick, J.L. Mcchesney, T. Seyller, K. Horn, and E. Rotenberg, Phys. Rev. Lett. 98, 206802 (2007).

    Article  Google Scholar 

  36. J.-K. Lee, D.-H. Hwang, J. Hwang, H.-K. Jung, T. Zyung, and S.Y. Park, Synth. Met. 111, 489 (2000).

    Article  Google Scholar 

  37. S. Ahmad, J. Liu, W. Ji, and L. Sun, Materials 11, 1868 (2018).

    Article  Google Scholar 

  38. B. Abbas and M. Khalis, Acta Phys. Pol. A 115, 857 (2010).

    Article  Google Scholar 

  39. S. Mohamadi, N. Sharifi-Sanjani, and H. Mahdavi, J. Macromol. Sci. A 48, 577 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Grant “Clad (Topological Insulators and Transition Metal Dichalcogenides) Planar Photonic Devices” (203/PFIZIK/6770002), which is under the LRGS Grant “Graphene and Other 2-Dimensional Nanomaterial” (Grant No.: LRGS (2015)/NGOD/UM/KPT) from the Ministry of Higher Education (MOHE) of Malaysia. All support from the Universiti Sains Malaysia and various parties are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. K. Yam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdalrheem, R., Yam, F.K., Ibrahim, A.R. et al. Improvement in Photodetection Characteristics of Graphene/p-Silicon Heterojunction Photodetector by PMMA/Graphene Cladding Layer. J. Electron. Mater. 48, 4064–4072 (2019). https://doi.org/10.1007/s11664-019-07170-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07170-1

Keywords

Navigation