Skip to main content
Log in

Thin-Layer Dielectric and Left-Handed Metamaterial Stacked Compact Triband Antenna for 2 GHz to 4 GHz Wireless Networks

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

As technology progresses, new approaches for the development of antenna systems must be developed. This study reveals a concept for a left-handed metamaterial-inspired compact triband antenna for use in wireless fidelity (WiFi), wireless local area networks (WLANs), and World Interoperability for Microwave Access (WiMAX) applications. The Microwave Studio computer technology simulation package was used to design and perform a numerical investigation on the metamaterial-inspired antenna on a thin layer of FR-4 dielectric material. The overall size of the antenna is 25 mm × 18 mm, and it is compatible with existing wireless devices. Results were measured in the frequency bands for wireless fidelity (2.41 GHz to 2.48 GHz), wireless local area networks (2.40 GHz to 2.49 GHz and 3.65 GHz to 3.69 GHz), and world interoperability for microwave access (3.30 GHz to 3.80 GHz). The measured average gain was 1.87 dBi, whereas the simulated gain was 1.93 dBi, associated with omnidirectional radiation patterns. The timing performance was analyzed, revealing fidelity factors for the face to face, side by side X, and side by side Y orientation of 0.76, 0.84, and 0.81, respectively. Finally, the operation bandwidth, antenna gain, omnidirectional radiation pattern, and fidelity factors of the timing performance reveal that the designed miniatured metamaterial antenna can be used in WiFi, WLAN, and WiMAX applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.G. Veselago, Sov. Physi. Uspekhi 10, 509 (1968).

    Article  Google Scholar 

  2. J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, IEEE Trans. Microw. Theory Technol. 47, 2075 (1999).

    Article  Google Scholar 

  3. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).

    Article  Google Scholar 

  4. M.G. Mayani, S. Asadi, A. Pirhadi, and S.M. Mahani, Int. J. Electron. Commun. 97, 79 (2018).

    Article  Google Scholar 

  5. Y. Chang-Chun, C. Yi-Ping, W. Qiong, and Z. Shing-Chuang, Chin. Phys. Lett. 25, 482 (2008).

    Article  Google Scholar 

  6. F. Urbani, IEEE Antenn. Wirel. Propag. Lett. 9, 720 (2010).

    Article  Google Scholar 

  7. M. Rizwan, H.B. Jin, F. Rehman, and Z.L. Hou, Central Eur. J. Phys. 12, 578 (2014).

    Google Scholar 

  8. M.M. Hasan, M.R.I. Faruque, and M.T. Islam, Bull. Pol. Acad. Sci. Technol. Sci. 5, 533 (2017).

    Google Scholar 

  9. S.P. Krishna and T. Khan, Int. J. Electron. Commun. 96, 107 (2018).

    Article  Google Scholar 

  10. M.M. Hasan, M.R.I. Faruque, and M.T. Islam, IEEE Access 5, 21217 (2017).

    Article  Google Scholar 

  11. L. Pazin, N. Telzhensky, and Y. Leviatan, IEEE Antenn. Wirel. Propag. Lett. 7, 197 (2008).

    Article  Google Scholar 

  12. J. Zhu and G.V. Eleftheriades, Electron. Lett. 45, 1104 (2009).

    Article  Google Scholar 

  13. K. Li, C. Zhu, L. Li, Y.M. Cai, and C.H. Liang, IEEE Antennas Wirel. Propag. Lett. 12, 678 (2013).

    Article  Google Scholar 

  14. A.T. Abed and M.S.J. Singh, Electron. Lett. 52, 1196 (2016).

    Article  Google Scholar 

  15. S. Nandi and A. Mohan, IEEE Antennas Wirel. Propag. Lett. 16, 1816 (2017).

    Google Scholar 

  16. H. Huang, Y. Liu, and S. Gong, IEEE Antennas Wirel. Propag. Lett. 15, 576 (2015).

    Article  Google Scholar 

  17. D. Sarkar and K.V. Srivastava, Electron. Lett. 53, 1623 (2017).

    Article  Google Scholar 

  18. Q. Li, Y. Wei, C. Ding, G. Wu, L. Zhang, F. Wang, X. Lei, J. Zhao, Z. Duan, M. Huang, Y. Gong, and M. Tan, in International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (2017), pp. 2535–2536.

  19. S.D. Assimonis, T. Samaras, and V. Fusco, IET Microw. Antennas Propag. 12, 332 (2018).

    Article  Google Scholar 

  20. S. Li, Compos. Sci. Technol. 68, 1962 (2008).

    Article  Google Scholar 

  21. O. Luukkonen, S.I. Maslovski, and S.A. Tretyakov, IEEE Antennas Wirel. Propag. Lett. 10, 1295 (2011).

    Article  Google Scholar 

  22. M.M. Hasan, M.R.I. Faruque, and M.T. Islam, Appl. Sci. 7, 1071 (2017).

    Article  Google Scholar 

  23. M.M. Hasan, M.R.I. Faruque, and M.T. Islam, Sci. Rep. 8, 1240 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Universiti Grant, GUP-2016-028.

Author information

Authors and Affiliations

Authors

Contributions

M.M.H. made substantial contributions to conception, design, experiment, and analysis. M.R.I.F. and M.T.I. participated in revising the article critically.

Corresponding author

Correspondence to Md. Mehedi Hasan.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, M.M., Faruque, M.R.I. & Islam, M.T. Thin-Layer Dielectric and Left-Handed Metamaterial Stacked Compact Triband Antenna for 2 GHz to 4 GHz Wireless Networks. J. Electron. Mater. 48, 3979–3990 (2019). https://doi.org/10.1007/s11664-019-07155-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07155-0

Keywords

Navigation