Skip to main content

Miniaturized Multiband Metamaterial Antenna for 5G Applications

  • Conference paper
  • First Online:
Recent Advances in Electrical and Electronic Engineering and Computer Science

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 865))

Abstract

A left handed metamaterial antenna is designed in this paper. The unit cell is a combination of Double sided Coupled Split Ring Resonator (DSRR) and Capacitance Loaded Strips (CLS) in order to achieve a design that exhibits both negative magnetic permeability and negative electrical permittivity which has a capability of achieving negative refraction to strengthen the radiation power of the antenna. The antenna is designed using HFSS software and it is etched on a FR4 substrate having a thickness of 0.8 mm and the overall dimension of the antenna is 13 × 13 × 0.8 mm3.The antenna achieves LHM multiband frequency for a measured return loss whose center frequencies are 4.7 GHz, 7.6 GHz, 8.8 GHz, 10 GHz, 10.5 GHz and measured voltage standing wave ratio are 1.12 dB, 1.76 dB, 1.097 dB, 1.25 dB, 1.55db with a maximum gain and directivity of 2.1 dB and 2.9 dB respectively. The efficiency of the proposed antenna is 95% at the frequency of 8.8 GHz which is considerable higher. The proposed metamaterial antenna is better miniaturized, and has multiband frequencies which mainly find applications in various wireless communication systems such as WI-MAX, fixed mobile and satellite communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Sci New Series 292(5514):77–79

    Google Scholar 

  2. Kafesaki M, ThKoschny, Penciu R S, Gundogdu T F et al (2005) Left-handed metamaterials: detailed numerical studies of the transmission properties. A pure Appl Optics 7(2)

    Google Scholar 

  3. Zhou X, Liu Y, Zhao X (2009) Low losses left-handed materials with optimized electric and magnetic resonance. Appl Phys 9:643–649

    Google Scholar 

  4. Smith DR, Padilla WJ, Vier DC et al (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84(4184–4187)

    Google Scholar 

  5. Wang J, Qu S, Zhang J et al (2009) A tunable left-handed metamaterial based on modified broadside-coupled split-ring resonators. Prog Electromagn Res Lett 6:35–45

    Article  Google Scholar 

  6. Alici KB, Ozbay E (2008) A planar metamaterial: Polarization independent fishnet structure. Photon Nanostructures Fundam Appl 6(1):102–107

    Google Scholar 

  7. Burokur SN, Latrach M, Toutain S (2005) Theoretical investigation of a circular patch antenna in the presence of a left-handed medium. IEEE Antennas Wirel Propag Lett 4:183–186

    Article  Google Scholar 

  8. Wang a J, Qu S, Xu Z et al (2009) Broadband planar left-handed metamaterials using split-ring resonator pairs. Photon Nanostructures Fundam Appl 7(2):108–113

    Google Scholar 

  9. EvrenEkmekci G-S (2009) Comparative investigation of resonance characteristics and electrical size of the Double-Sided SRR, Bc-SRR and conventional SRR type metamaterials for varying substrate parameters. Prog Electromag Res B 12:35–62

    Article  Google Scholar 

  10. Marqu´es, Mesa R F, Martel J, et al (2003) Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design-theory and experiments. IEEE Trans Antennas Propag 51(10):2572–2581

    Article  Google Scholar 

  11. Marqu´es R, Mdina F, Rafii-El-Idrissi R (2002) Role of bianisotropy in negative permeability and left-handed metamaterials. Phys Rev B 65:14440(1)–14440(6)

    Google Scholar 

  12. Chinnathampy S, Aruna MN (2021) Antenna design: micro strip patch for spectrum utilization in cognitive radio networks. Wireless Pers Commun 119:959–979

    Article  Google Scholar 

  13. Singh A, Mehra RM, Pandey VK (2020) Design and optimization of microstrip patch antenna for UWB applications using moth-flame optimization algorithm. Wirel Pers Commun 112:2485–2502

    Article  Google Scholar 

  14. Jenath Sathikbasha M, Nagarajan V (2020) Design of multiband frequency reconfigurable antenna with defected ground structure for wireless applications. Wirel Pers Commun 113(2):867–892

    Article  Google Scholar 

  15. Liua W-C, Wua C-M, Chub N-C (2021) A compact low-profile dual- band antenna for WLAN and WAVE applications. Int J Electron Commun 66(6):467–471

    Article  Google Scholar 

  16. Mehedi Hasan MD, Faruque MRI, Islam MT (2019) Thin-layer dielectric and left-handed metamaterial stacked compact triband antenna for 2 GHz to 4 GHz wireless networks. J Electron Mater 48(6):3979–3990

    Google Scholar 

  17. Nandi S, Mohan A (2017) CRLH unit cell loaded Triband compact MIMO antenna for WLAN/ WiMAX, applications. IEEE Trans Antennas Propag 16:1816–1819

    Google Scholar 

  18. Abed AT, Singh MSJ (2016) Slot antenna single layer fed by step impedance strip line for Wi-Fi and Wi-Max applications. Electron Lett 52(14):1196–1198

    Article  Google Scholar 

  19. Rajkumar R, Kiran KU (2017) A metamaterial inspired compact open split ring resonator antenna for multiband operation. Wirel Pers Commun 97(2):951–965

    Article  Google Scholar 

  20. Kakhki MB, Rezaei P (2017) Reconfigurable micro strip slot antenna with DGS for UWB applications. Int J Microw Wirel Technol 9(7):1517–1522

    Article  Google Scholar 

  21. Salai Thillai Thilagam J, Ganesh Babu TR (018) A Rectangular microstrip patch antenna at ISM band. In: Proceedings of the second international conference on computing methodologies and communication

    Google Scholar 

  22. Jahangiri M, Rajebi S (2020) Effects of split ring resonator (SRR) Metamaterial on the radiation pattern and variation of the heating focus points of the micro strip patch antenna. Bimonthly Peer-Rev J 5(1):307–316

    Google Scholar 

  23. Sumathi K, Lavadiya S, Yin PengZhi et al (2021) High gain multiband and frequency reconfigurable metamaterial superstrate micro strip patch antenna for C/X/Ku-band wireless network application. Wirel Netw 27:2131–2146

    Article  Google Scholar 

  24. Yılmaz HO, Yaman F (2019) Metamaterial antenna designs for a 5.8GHz Doppler radar. IEEE Trans Instrum Meas 69(4):1775–1782

    Google Scholar 

  25. Rajak N, Chatoraj N, Kumar R (2019) A gain and bandwidth enhanced metamaterial based surface antenna for wireless communication. URSI Asia-Pacific Radio Science Conference

    Google Scholar 

  26. Abdelkebir S, Mayouf A, Mayouf F et al (2019) Study of metamaterial surface wave antenna based on split ring resonator. Microsyst Technol 25:797–810

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramya, V., Vanniya, B., Robinson, S., Batcha, A.S. (2022). Miniaturized Multiband Metamaterial Antenna for 5G Applications. In: Zakaria, Z., Emamian, S.S. (eds) Recent Advances in Electrical and Electronic Engineering and Computer Science. Lecture Notes in Electrical Engineering, vol 865. Springer, Singapore. https://doi.org/10.1007/978-981-16-9781-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9781-4_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9780-7

  • Online ISBN: 978-981-16-9781-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics