Skip to main content
Log in

Amorphous Cobalt Carbon Nanofibers Decorated with Conductive Ag as Free-Standing Flexible Electrode Material for High-Performance Supercapacitors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Carbon nanofiber-based amorphous cobalt oxide (CoxOy/CNFs) embedded with Ag have been prepared by a simple electrospinning technique followed by heat treatment. Because the composite material prepared by this method showed good flexibility, addition of a conductive agent and binder is not required for use as an electrode material in supercapacitors. The Co-Ag/CNFs composite materials exhibited remarkably improved electrical conductivity and specific capacitance with good cycling stability in comparison with electrodes based on CoxOy/CNFs, owing to the presence of Ag; For instance, the Co-Ag/CNFs(2) composite electrode exhibited specific capacitance of 698 F g−1 at 1 A g−1 and good cycling stability with ∼ 81.1% capacitance retention over 3000 cycles. The composite materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD) analysis, Raman spectra, and thermogravimetric analysis (TGA), confirming successful combination of the amorphous cobalt oxide and silver metal element with the carbon nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Tang, Y.P. Li, H.B. Cao, F. Duan, J. Zhang, Y. Zhang, and Y. Wang, RSC Adv. 5, 40163 (2015).

    Article  Google Scholar 

  2. M.M. Shaijumon, F.S. Ou, L.J. Ci, and P.M. Ajayan, Chem. Commun. 23, 2373 (2008).

    Article  Google Scholar 

  3. G.H. Yu, L.B. Hu, N.A. Liu, H.L. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, and Z.N. Bao, Nano Lett. 11, 4438 (2011).

    Article  Google Scholar 

  4. Y.K. Zhang, J.L. Li, F.Y. Kang, F. Gao, and X.D. Wang, Int. J. Hydrog. Energy 37, 860 (2012).

    Article  Google Scholar 

  5. S.C. Sekhar, G. Nagaraju, and J.S. Yu, Nano Energy 36, 58 (2017).

    Article  Google Scholar 

  6. P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O. Shitta-Bey, G. Wilson, A. Cruden, and R. Carter, Energy Environ. Sci. 3, 1238 (2010).

    Article  Google Scholar 

  7. T. Brousse, D. Belanger, and J.W. Long, J. Electrochem. Soc. 162, 5185 (2015).

    Article  Google Scholar 

  8. X.H. Xia, J.P. Tu, Y.Q. Zhang, X.L. Wang, X.D. Gu, X.D. Zhao, and H.J. Fan, ACS Nano 6, 5531 (2012).

    Article  Google Scholar 

  9. Y.Q. Zhang, X.H. Xia, J.P. Tu, Y.J. Mai, S.J. Shi, X.L. Wang, and C.D. Gu, J. Power Sources 199, 413 (2012).

    Article  Google Scholar 

  10. V. Gupta, T. Kusahara, H. Toyama, S. Gupta, and N. Miura, Electrochem. Commun. 9, 2315 (2007).

    Article  Google Scholar 

  11. X.H. Xia, J.P. Tu, Y.Q. Zhang, Y.J. Mai, X.L. Wang, C.D. Gu, and X.B. Zhao, J. Phys. Chem. C 115, 22662 (2011).

    Article  Google Scholar 

  12. M.E. Roberts, D.R. Wheeler, B.B. McKenzie, and B.C. Bunker, J. Mater. Chem. 19, 6977 (2009).

    Article  Google Scholar 

  13. S. Biswas and L.T. Drzal, Chem. Mater. 22, 5667 (2010).

    Article  Google Scholar 

  14. M.J. Zhi, C.C. Xiang, J.T. Li, M. Li, and N.Q. Wu, Nanoscale 5, 72 (2013).

    Article  Google Scholar 

  15. W.F. Wei, X.W. Cui, W.X. Chen, and D.G. Ivey, Chem. Soc. Rev. 40, 1697 (2011).

    Article  Google Scholar 

  16. V. Subramanian, H.W. Zhu, and B.Q. Wei, J. Power Sources 159, 361 (2006).

    Article  Google Scholar 

  17. C.P. Yuan, H.G. Wang, J.Q. Liu, Q. Wu, Q. Duan, and Y.H. Li, J. Colloid Interface Sci. 494, 274 (2017).

    Article  Google Scholar 

  18. L.L. Zhang and X.S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).

    Article  Google Scholar 

  19. V.V. Pokropivny and V.V. Skorokhod, Mater. Sci. Eng. C 27, 990 (2007).

    Article  Google Scholar 

  20. J.N. Tiwari, R.N. Tiwari, and K.S. Kim, Prog. Mater. Sci. 57, 724 (2012).

    Article  Google Scholar 

  21. Z. Yu, L. Tetard, L. Zhai, and J. Thomas, Energy Environ. Sci. 8, 702 (2015).

    Article  Google Scholar 

  22. W.J. Gang, Y. Yang, Z.H. Huang, and F. Kang, Electrochim. Acta 75, 213 (2012).

    Article  Google Scholar 

  23. T. Jin, Q.Q. Han, Y.J. Wang, and L.F. Jiao, Small 14, 1703086 (2017).

    Article  Google Scholar 

  24. Y.H. Wang and I. Zhitomirsky, Mater. Lett. 65, 1759 (2011).

    Article  Google Scholar 

  25. D.D. Lu, Y.G. Li, and C.P. Wong, J. Adhes. Sci. Technol. 22, 815 (2008).

    Article  Google Scholar 

  26. Y.G. Sun, Nanoscale 2, 1626 (2010).

    Article  Google Scholar 

  27. X.W. Sun, C.P. Li, G.F. Huang, and J. Bai, J. Mater. Sci. Mater. Electron. 28, 12448 (2017).

    Article  Google Scholar 

  28. X. Chen, B.T. Zhao, Y. Cai, M. Tade, and Z.P. Shao, Nanoscale 5, 12589 (2013).

    Article  Google Scholar 

  29. B.H. Kim, C.H. Kim, K.S. Yang, A. Rahy, and D.J. Yang, Electrochim. Acta 83, 335 (2012).

    Article  Google Scholar 

  30. X.W. Sun, C.P. Li, and J. Bai, J. Mater. Sci. Mater. Electron. 29, 19382 (2018).

    Article  Google Scholar 

  31. A. Yu, C. Lee, N.S. Lee, M.H. Kim, and Y. Lee, ACS. Appl. Mater. Interfaces 8, 32833 (2016).

    Article  Google Scholar 

  32. S.C. Petitto, E.M. Marsh, G.A. Carson, and M.A. Langell, J. Mol. Catal. A Chem. 281, 49 (2008).

    Article  Google Scholar 

  33. H. Xia, C.Y. Hong, X.Q. Shi, B. Li, G.L. Yuan, Q.F. Yao, and J.P. Xie, J. Mater. Chem. A 3, 1216 (2015).

    Article  Google Scholar 

  34. G. Nagaraju, Y.H. Ko, and J.S. Yu, Cryst. Eng. Commun 16, 11027 (2014).

    Article  Google Scholar 

  35. D.D. Yu, J. Bai, J.Z. Wang, H.O. Liang, and C.P. Li, Appl. Surf. Sci. 399, 185 (2017).

    Article  Google Scholar 

  36. H.G. Wang, C.P. Yuan, R. Zhou, Q. Duan, and Y.H. Li, Chem. Eng. J. 316, 1004 (2017).

    Article  Google Scholar 

  37. E. Samuel, B. Joshi, H.S. Jo, Y.I. Kim, M.T. Swihart, J.M. Yun, K.H. Kim, and S.S. Yoon, J. Alloys Compd. 728, 1362 (2017).

    Article  Google Scholar 

  38. S. Dou, X.Y. Li, L. Tao, J. Huo, and S.Y. Wang, Chem. Commun. 52, 9727 (2016).

    Article  Google Scholar 

  39. J.Y. Guo, J.Q. Liu, H.H. Dai, R. Zhou, T.Y. Wang, C.C. Zhang, S. Ding, and H.G. Wang, J. Colloid Interface Sci. 507, 154 (2017).

    Article  Google Scholar 

  40. D.F. Li, H.J. Wang, and X.K. Wang, Spectrosc. Spect. Anal. 27, 2249 (2007).

    Google Scholar 

  41. Z.L. Xu, B. Zhang, Z.Q. Zhou, S. Abouali, G.M. Akbari, J.Q. Huang, J.Q. Huang, and J.K. Kim, RSC Adv. 4, 22359 (2014).

    Article  Google Scholar 

  42. C.W. Tang, C.B. Wang, and S.H. Chien, Thermochim. Acta 473, 68 (2008).

    Article  Google Scholar 

  43. M. Kumar, A. Subramania, and K. Balakrishnan, Electrochim. Acta 149, 152 (2014).

    Article  Google Scholar 

  44. T. Li, R. Li, and H. Luo, J. Mater. Chem. A 4, 18922 (2016).

    Article  Google Scholar 

  45. Q.W. Zhou, J.C. Xing, Y.F. Gao, Y.M. He, Z.H. Guo, and Y.M. Li, ACS. Appl. Mater. Interfaces 6, 11394 (2014).

    Article  Google Scholar 

  46. G.F. Huang, C.P. Li, J. Bai, X.W. Sun, and H.O. Liang, Int. J. Hydrog. Energy 41, 22144 (2016).

    Article  Google Scholar 

  47. H.W. Wang, H. Yi, X. Chen, and X.F. Wang, J. Mater. Chem. A 2, 1165 (2014).

    Article  Google Scholar 

  48. J. Wang, Y.L. Xu, X. Chen, and X.F. Sun, Compos. Sci. Technol. 67, 2981 (2007).

    Article  Google Scholar 

  49. Y.G. Zhou, Y. Wang, Y.M. Shi, Z.X. Huang, L. Fu, and H.Y. Yang, Adv. Energy Mater. 4, 1301788 (2014).

    Article  Google Scholar 

  50. L. Hao, J. Wang, L.F. Shen, J.J. Zhu, B. Ding, and X.G. Zhang, RSC Adv. 6, 25056 (2016).

    Article  Google Scholar 

  51. J. Jun, J.S. Lee, D.H. Shin, S.G. Kim, and J. Jang, Nanoscale 7, 16026 (2015).

    Article  Google Scholar 

  52. H.G. Wang, S. Yuan, D.L. Ma, X.B. Zhang, and M.J. Yan, Energy Environ. Sci. 8, 1660 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the National Natural Science Foundation of China (No. 21766022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunping Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 642 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Li, C. & Bai, J. Amorphous Cobalt Carbon Nanofibers Decorated with Conductive Ag as Free-Standing Flexible Electrode Material for High-Performance Supercapacitors. J. Electron. Mater. 48, 2754–2760 (2019). https://doi.org/10.1007/s11664-019-06971-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-06971-8

Keywords

Navigation