Skip to main content
Log in

Mixed-valent CoxO–Ag/carbon nanofibers as binder-free and conductive-free electrode materials for high supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The composite materials, carbon nanofibers-based cobalt oxide and Ag (CoxO–Ag/CNFs) were fabricated through a facile electrospinning method followed by calcination. They were Co2+–Ag/CNFs, Co2+@Co3+–Ag/CNFs. And the Co2+@Co3+–Ag/CNFs sample was obtained through transform Co2+–Co3+ partially by the catalytic oxidation performance of silver, instead of the traditional high-temperature calcination process. Meanwhile, the high conductive of Ag can promote the transportation of electrons and ions between the electrode and electrolyte. The flexible composite materials as free-standing and additive-free film electrodes for supercapacitors. In virtue of the presence of Ag, the composite materials have better conductivity and supercapacitor performance than Co/CNFs-based electrode. Interestingly, the sample of Co2+–Ag/CNFs has a higher capacitors than Co2+@Co3+–Ag/CNFs sample, that indicates the supercapacitor performance has an important relationship with the valence state of cobalt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.M. Zhao, Q.X. Zhao, J.Q. Qiu, H.G. Xue. H. Pang, Tin-based nanomaterials for electrochemical energy storage. RSC Adv. 6, 95449–95468 (2016)

    Article  CAS  Google Scholar 

  2. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  CAS  Google Scholar 

  3. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016)

    Article  Google Scholar 

  4. Q.Q. W, Q. Zong, C.L. Zhang, H. Yang, Q.L. Zhang, Network structure of SnO2 hollow sphere/PANI nanocomposites for electrochemical performance. Dalton Trans. 47, 2368–2375 (2018)

    Article  Google Scholar 

  5. P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O. Shitta-Bey, G. Wilson, A. Cruden, R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci. 3, 1238–1251 (2010)

    Article  CAS  Google Scholar 

  6. E. Samuel, B. Joshi, H.S. Jo, Y.I. Kim, S. An, M.T. Swihart, J.M. .Yun, K.H. Kim, S.S. Yoon, Carbon nanofibers decorated with FeOx nanoparticles as a flexible electrode material for symmetric supercapacitors. Chem. Eng. J. 328, 776–784 (2017)

    Article  CAS  Google Scholar 

  7. G.M. Wang, F. Qian, C. Saltikov, Y.Q. Jiao, Y. Li, Microbial reduction of graphene oxide by Shewanella. Nano Res. 4, 563–570 (2011)

    Article  CAS  Google Scholar 

  8. X.H. Lu, G.M. Wang, T. Zhai, M.H. Yu, J.Y. Gan, Y.X. Tong, Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 3, 1690–1696 (2012)

    Article  Google Scholar 

  9. G.H. Yu, L.B. Hu, M. Vosgueritchian, H.L. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui, Z.N. Bao, Solution processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett. 11, 2905–2911 (2011)

    Article  CAS  Google Scholar 

  10. L.Y. Yuan, X.H. Lu, X. Xiao, T. Zhai, J.J. Dai, F.C. Zhang, B. Hu, X. Wang, L. Gong, J. Chen, Flexible solid state supercapacitors based on carbon nanoparticles/ MnO2 nanorods hybrid structure. ACS Nano 6, 656–661 (2012)

    Article  CAS  Google Scholar 

  11. X.H. Xia, J.P. Tu, Y.Q. Zhang, Y.J. Mai, X.L. Wang, C.D. Gu, X.B. Zhao, Three-dimentional porous nano-Ni/Co(OH)2 nanoflake composite film: a pseudocapacitive material with superior performance. J. Phys. Chem. C 115, 22662–22668 (2011)

    Article  CAS  Google Scholar 

  12. L. Chen, L.J. Sun, F. Luan, Y. Liang, Y. Li, X.X. Liu, Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. J. Power Sources 195, 3742–3747 (2010)

    Article  CAS  Google Scholar 

  13. C.Z. Meng, C.H. Liu, L.Z. Chen, C.H. Hu, S.S. Fan, Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett. 10, 4025–4031 (2010)

    Article  CAS  Google Scholar 

  14. H. Jiang, L. Yang, C. Yan, P.S. Lee, J. Ma, High-rate electrochemical capacitors from highly graphitic carbon-tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy Environ. Sci. 4, 1813–1819 (2011)

    Article  CAS  Google Scholar 

  15. J.G. Wang, Y. Yang, Z.H. Huang, F. Kang, Synthesis and electrochemical performance of MnO2/CNTs-embedded carbon nanofibers nanocomposites for supercapacitors. Electrochim. Acta 75, 213–219 (2012)

    Article  CAS  Google Scholar 

  16. M.J. Deng, F.L. Hunag, I.W. Sun, W.T. Tsai, J.K. Chang, An entirely electrochemical preparation of a nano-structured cobalt oxide electrode with superior redox activity. Nanotechnology 20, 175602–175606 (2009)

    Article  Google Scholar 

  17. C.Z. Yuan, L. Yang, L.R. Hou, J.Y. Li, Y.X. Sun, X.G. Zhang, L.F. Shen, X.J. Lu, S.L. Xiong, X.W. Lou, Flexible hybrid paper made of monolayer Co3O4 microsphere arrays on rGO/CNTs and their application in electrochemical capacitors. Adv. Funct. Mater. 22, 2560–2566 (2012)

    Article  CAS  Google Scholar 

  18. X.F. Xia, Q.L. Hao, W. Lei, W.J. Wang, D.P. Sun, X. Wang, Nanostructured ternary composites of graphene/Fe2O3/polyaniline for high-performance supercapacitors. J. Mater. Chem. 22, 16844–16850 (2012)

    Article  CAS  Google Scholar 

  19. M.J. Zhi, C.C. Xiang, J.T. Li, M. Li, N.Q. Wu, Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5, 72–88 (2013)

    Article  CAS  Google Scholar 

  20. A. Yu, C. Lee, N.S. Lee, M.H. Kim, Y. Lee, Highly efficient silver-cobalt composite nanotube electrocatalysts for favorable oxygen reduction reaction. ACS Appl. Mater. Interfaces. 8, 32833–32841 (2016)

    Article  CAS  Google Scholar 

  21. H.Y. He, J. Wang, X. Li, X.W. Zhang, W.J. Weng, G.R. Han, Silica nanofibers with controlled mesoporous structure via electrospinning: from random to orientated. Mater. Lett. 94, 100–103 (2013)

    Article  CAS  Google Scholar 

  22. H. Wu, L.B. Hu, M.W. Rowell, D.S. Kong, J.J. Cha, J.R. Mcdonough, J. Zhu, Y. Yang, M.D. Mcgehee, Y. Cui, Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett. 10, 4242–4248 (2010)

    Article  CAS  Google Scholar 

  23. D. Volder, F.L. Michael, S.H. Tawfick, R.H. Baughman, H.A. John, Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013)

    Article  Google Scholar 

  24. X.S. Hu, J. Bai, J.Z. Wang, C.P. Li, W. Xu, Preparation of 4A-zeolite-based Ag nanoparticle composite catalyst and research of the catalytic properties. RSC Adv. 5, 2968–2973 (2015)

    Article  CAS  Google Scholar 

  25. L. Zeng, T.s. Zhao, L. An, A high-performance supportless silver nanowire catalyst for anion exchange membrane fule cells. J. Mater. Chem. A 3, 1410–1416 (2015)

    Article  CAS  Google Scholar 

  26. Y.G. Sun, Silver nanowires-unique templates for functional nanostructures. Nanoscale. 2, 1626–1642 (2010)

    Article  CAS  Google Scholar 

  27. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, LeoW.M. Lau, A.R. Gerson, R.S. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011)

    Article  CAS  Google Scholar 

  28. S.L. Xiong, J.S. Chen, X.W. Lou, H.C. Zeng, Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-Like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties. Adv. Funct. Mater. 22, 861–871 (2012)

    Article  CAS  Google Scholar 

  29. V.G. Bayev, J.A. Fedotova, J.V. Kasiuk, S.A. Vorobyova, A.A. Sohor, I.V. Komissarov, N.G. Kovalchuk, S.L. Prischepa, N.I. Kargin, M. Andrulevičius, J. Przewoznik, C. Kapusta, O.A. Ivashkevich, S.I. Tyutyunnikov, N.N. Kolobylina, P.V. Guryeva, CVD graphene sheets electrochemically decorated with ‘‘core-shell” Co/CoO nanoparticles. Appl. Surf. Sci. 440, 1252–1260 (2018)

    Article  CAS  Google Scholar 

  30. A. Jagadale, X. Zhou, D. Blaisdell, S. Yang, Carbon nanofbers (CNFs) supported cobalt- nickel sulfde (CoNi2S4) nanoparticles hybrid anode for high performance lithium ion capacitor. Sci Rep. 8, 1602–1623 (2018)

    Article  Google Scholar 

  31. S.S. Wang, Q.H. Li, M. Chen, W.H. Pu, Y.L. Wu, M.D. Yang, Electrochemical capacitance performance of Fe-doped Co3O4/graphene nanocomposite: investigation on the effect of iron. Electrochim. Acta 215, 473–482 (2016)

    Article  CAS  Google Scholar 

  32. A.C. Pradhan, T. Uyar, Morphological control of mesoporosity and nanoparticles within Co3O4-CuO electrospun nanofibers: quantum confinement and visible light Photocatalysis Performance. ACS Appl. Mater. Interfaces 9, 35757–35774 (2017)

    Article  CAS  Google Scholar 

  33. L. Gan, M.R. Wang, L.T. Hu, J. Feng, Y.Q. Lai, J. Li, Nanosheets/mesopore structured Co3O4@CMK-3 composite as electrocatalyst for oxygen reduction reaction. ChemCatChem 21, 1321–1329 (2018)

    Article  Google Scholar 

  34. Z.J. Jiang, Z.Q. Jiang, Interaction induced high catalytic activities of CoO nanoparticles grown on nitrogen-doped hollow graphene microspheres for oxygen reduction and evolution reactions. Sci. Rep. 6, 27081–27195 (2016)

    Article  CAS  Google Scholar 

  35. P. Howli, S. Das, S. Sarkar, M. Samanta, K. Panigrahi, N.S. Das, K.K. Chattopadhyay, Co3O4 nanowires on flexible carbon fabric as a binder-free electrode for all solid-state symmetric supercapacitor. ACS Omega. 2, 4216–4226 (2017)

    Article  CAS  Google Scholar 

  36. C.W. Tang, C.B. Wang, S.H. Chien, Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochim. Acta 473, 68–73 (2008)

    Article  CAS  Google Scholar 

  37. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, Group theory. Application to the physics of condensed matter. (Springer, Berlin, 2008)

    Google Scholar 

  38. S. Li, C. Chen, K. Fu, L. Xue, C. Zhao, S. Zhang, Y. Hu, L. Zhou, X. Zhang, Comparison of Si/C, Ge/C and Sn/C composite nanofiber anodes used in advanced lithium-ion batteries. Solid State Ionics. 254, 17–26 (2014)

    Article  CAS  Google Scholar 

  39. R.K. Selvan, I. Perelshtein, N. Perkas, A. Gedanken, Synthesis of hexagonal-shaped SnO2 nanocrystals and SnO2@C nanocomposites for electrochemical redox supercapacitors. J. Phys. Chem. C 112, 1825–1830 (2008)

    Article  CAS  Google Scholar 

  40. S.N. Arshad, M. Naraghi, I. Chasiotis, Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon 49, 1710–1719 (2011)

    Article  CAS  Google Scholar 

  41. L.P. Guo, J. Bai, J.Z. Wang, H.O. Liang, C.P. Li, W.Y. Sun, Q.R. Meng, Fabricating series of controllable-porosity carbon nanofibers-based palladium nanoparticles catalyst with enhanced performances and reusability. J. Mol. Catal.A: Chem. 400, 95–103 (2015)

    Article  CAS  Google Scholar 

  42. B.H. Kim, C.H. Kim, K.S. Yang, A. Rahy, D.J. Yang, Electrospun vanadium pentoxide/carbon nanofiber composites for supercapacitor electrodes. Electrochim. Acta 83, 335–340 (2012)

    Article  CAS  Google Scholar 

  43. S.H. Park, W.J. Lee, Hierarchically mesoporous flower-like cobalt oxide/carbon nanofiber composites with shell-core structure as anodes for lithium ion batteries. Carbon 89, 197–207 (2015)

    Article  CAS  Google Scholar 

  44. Y.P. Huang, Y.E. Miao, W.W. Tjiu, T.X. Liu, High-performance flexible supercapacitors based on mesoporous carbon nanofibers/Co3O4/MnO2 hybrid electrodes. RSC Adv. 5, 18952–18959 (2015)

    Article  CAS  Google Scholar 

  45. Q. Xue, H.B. Gan, Y. Huang, M.S. Zhu, Z.X. Pei, H.F. Li, S.Z. Deng, F. Liu, C.Y. Zhi, Boron element nanowires electrode for supercapacitors. Adv. Energy Mater. 8, 1703117–1703125 (2018)

    Article  Google Scholar 

  46. Y. Gogotsi, R.M. Penner, Energy storage in nanomaterials—capacitive,pseudocapacitive, or battery-like? ACS Nano 12, 2081–2083 (2018)

    Article  CAS  Google Scholar 

  47. X.J. Chen, D. Chen, X.Y. Guo, R.M. Wang, H.Z. Zhang, Facile growth of caterpillar-like NiCo2S4 nanocrystal arrays on nickle foam for high-performance supercapacitors. ACS Appl. Mater. Interfaces. 9, 18774–18781 (2017)

    Article  CAS  Google Scholar 

  48. J. Chang, M. Jin, F. Yao, T.H. Kim, V.T. Le, H. Yue, F. Gunes, B. Li, A. Ghosh, S. Xie, Y.H. Lee, Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv. Funct. Mater. 23, 5074–5083 (2013)

    Article  CAS  Google Scholar 

  49. H. Gao, F. Xiao, C.B. Ching, H. Duan, High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS Appl. Mater. Interfaces. 4, 2801–2810 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially support by the National Natural Science Foundation of China (Grant No. 21766022), and the Inner Mongolia Natural Science Foundation (Grant No. 2017MS(LH)0204), and the Scientific Research Program of Higher Education Institutions of Inner Mongolia Autonomous Region (Grant No. NJZY16087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunping Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Li, C. & Bai, J. Mixed-valent CoxO–Ag/carbon nanofibers as binder-free and conductive-free electrode materials for high supercapacitor. J Mater Sci: Mater Electron 29, 19382–19392 (2018). https://doi.org/10.1007/s10854-018-0067-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0067-0

Navigation