Skip to main content

Advertisement

Log in

Constructing ZnO/ZnCr2O4@TiO2-NTA Nanocomposite for Photovoltaic Conversion and Photocatalytic Hydrogen Evolution

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanocomposites based on TiO2 nanotube arrays (TiO2-NTA) have received increasing attention for photoconversion and photocatalytic reactions. Here, TiO2-NTA were prepared by an anodic oxidation process. ZnO and ZnCr2O4 nanoparticles were further anchored on the surface of the pre-synthesized TiO2-NTA to form a ternary ZnO/ZnCr2O4@TiO2-NTA (Zn-Cr-O@TiO2-NTA) nanocomposite by an electrochemical reduction–oxidation strategy. Compared to bare TiO2-NTA, the Zn-Cr-O@TiO2-NTA nanocomposite shows remarkably higher photovoltaic conversion efficiency (nine times greater) under visible light irradiation, and photocatalytic H2 evolution activity (2.8 times greater) under simulated sunlight irradiation, respectively. The construction of ternary nanocomposite is beneficial to enhancing the absorption of simulated sunlight irradiation. Moreover, the Type-II semiconductor heterojunction facilitates separation of electron–hole pairs and interfacial charge transport. As a result, improvement of photoconversion efficiency has been obtained. This work may have fundamental importance to designing complex and efficient photoelectrodes for energy-harvesting applications, including photovoltaic solar cells and water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda, Nature 238, 37 (1972).

    Article  Google Scholar 

  2. S. Dongying, Z. Rui, S. Ming-Jun, C. Xinrui, S. Chun-Xiao, C. Chao-Jie, L. Chun-Sen, Z. Junwei, and D. Miao, Angew. Chem. Int. Ed. 56, 14637 (2017).

    Article  Google Scholar 

  3. T. Yi, G.D.A.F. Pelayo, D. Cao-Thang, F. Gael, B. Marcella, L. Jun, L. Min, Z. Xixiang, Z. Xueli, K.M. Golam, H. Sjoerd, S. David, S. Hoogland, and F. Andrea, Adv. Mater. 29, 1701165 (2017).

    Article  Google Scholar 

  4. J.M. Macak, M. Zlamal, J. Krysa, and P. Schmuki, Small 3, 300 (2007).

    Article  Google Scholar 

  5. L.X. Zheng, S.C. Han, H. Liu, P.P. Yu, and X.S. Fang, Small 12, 1527 (2016).

    Article  Google Scholar 

  6. M.M. Momeni, Y. Ghayeb, and Z. Ghonchegi, Ceram. Int. 41, 8735 (2015).

    Article  Google Scholar 

  7. M. Ye, J. Gong, Y. Lai, C. Lin, and Z. Lin, J. Am. Chem. Soc. 134, 15720 (2012).

    Article  Google Scholar 

  8. X. Yang, W. Liu, and P. Ren, Phys. E 83, 322 (2016).

    Article  Google Scholar 

  9. Q. Cheng, X. Deng, H. Zhang, R. Guo, Y. Cui, Q. Ma, X. Zhang, X. Cheng, M. Xie, and B. Li, Sep. Purif. Technol. 193, 255 (2018).

    Article  Google Scholar 

  10. T.-D. Dang and T.T.H. Bui, J. Electron. Mater. 46, 3279 (2017).

    Article  Google Scholar 

  11. H.H. Yang, W.G. Fan, V. Aleksandar, A. Susha, W.Y. Teoh, and A.L. Rogach, Adv. Funct. Mater. 22, 2821 (2012).

    Article  Google Scholar 

  12. M.Z. Ge, Q.S. Li, C.Y. Cao, J.Y. Huang, S.H. Li, S.N. Zhang, Z. Chen, K.Q. Zhang, S.S. Al-Deyab, and Y.K. Lai, Adv. Sci. 4, 1600152 (2017).

    Article  Google Scholar 

  13. M. Xia, L. Huang, Y. Zhang, and Y. Wang, J. Electron. Mater. 47, 5291 (2018).

    Article  Google Scholar 

  14. R.-A. Doong and C.-Y. Liao, Sep. Purif. Technol. 179, 403 (2017).

    Article  Google Scholar 

  15. M. Szkoda, K. Siuzdak, and A. Lisowska-Oleksiak, Phys. E 84, 141 (2016).

    Article  Google Scholar 

  16. S. Ozkan, A. Mazare, and P. Schmuki, Electrochim. Acta 176, 819 (2015).

    Article  Google Scholar 

  17. A.M.D. Fornari, M.B. de Araujo, C.B. Duarte, G. Machado, S.R. Teixeira, and D.E. Weibel, Int. J. Hydrog. Energy 41, 11599 (2016).

    Article  Google Scholar 

  18. J.F. de Brito, F. Tavella, C. Genovese, C. Ampelli, M.V.B. Zanoni, G. Centi, and S. Perathoner, Appl. Catal. B Environ. 224, 136 (2018).

    Article  Google Scholar 

  19. Y. Li, F.-T. Liu, Y. Chang, J. Wang, and C.-W. Wang, Appl. Surf. Sci. 426, 770 (2017).

    Article  Google Scholar 

  20. H. Tian, K. Shen, X. Hu, L. Qiao, and W. Zheng, J. Alloys Compd. 691, 369 (2017).

    Article  Google Scholar 

  21. M. Faraji, N. Mohaghegh, and A. Abedini, J. Photochem. Photobio. B 178, 124 (2018).

    Article  Google Scholar 

  22. X. Yuan, J. Yi, H. Wang, H. Yu, S. Zhang, and F. Peng, Mater. Chem. Phys. 196, 237 (2017).

    Article  Google Scholar 

  23. L.T.V. Ha, L.M. Dai, D.N. Nhiem, and N. Van Cuong, J. Electron. Mater. 45, 4215 (2016).

    Article  Google Scholar 

  24. J. Hong, K.-I. Katsumata, and N. Matsushita, J. Electron. Mater. 45, 4875 (2016).

    Article  Google Scholar 

  25. K. Rajar, Sirajuddin, A. Balouch, M.I. Bhanger, T.H. Sherazi, and R. Kumar, J. Electron. Mater. 47, 2177 (2018).

    Article  Google Scholar 

  26. E. Mendoza-Mendoza, A.G. Nuñez-Briones, L.A. García-Cerda, R.D. Peralta-Rodríguez, and A.J. Montes-Luna, Ceram. Int. 44, 6176 (2018).

    Article  Google Scholar 

  27. A. Abbasi, M. Hamadanian, M. Salavati-Niasari, and S. Mortazavi-Derazkola, J. Colloid Interface Sci. 500, 276 (2017).

    Article  Google Scholar 

  28. P. Cheng and G. Lian, J. Am. Ceram. Soc. 91, 2388 (2008).

    Article  Google Scholar 

  29. A. Kumar, T. Dixit, I.A. Palani, P.R. Sagdeo, and V. Singh, Int. J. Appl. Ceram. Technol. 13, 912 (2016).

    Article  Google Scholar 

  30. T. Dixit, I.A. Palani, and V. Singh, J. Mater. Sci. Mater. Electron. 26, 821 (2015).

    Article  Google Scholar 

  31. A. Chakraborty, R. Pizzoferrato, A. Agresti, F. De Matteis, A. Orsini, and P.G. Medaglia, J. Electron. Mater. 47, 5863 (2018). https://doi.org/10.1007/s11664-018-6473-5

    Article  Google Scholar 

  32. L. Zhang, C.H. Dai, X.N. Zhang, Y.N. Liu, and J.H. Yan, J. Cent. South Univ. 23, 3092 (2016).

    Article  Google Scholar 

  33. L. Zhang, J.H. Yan, M. Zhou, Y. Yang, and Y.N. Liu, Appl. Surf. Sci. 268, 237 (2013).

    Article  Google Scholar 

  34. M. Nazari, F. Golestani-Fard, R. Bayati, and B. Eftekhari-Yekta, Superlattice Microstruct. 80, 91 (2015).

    Article  Google Scholar 

  35. X. Deng, H. Zhang, Q. Ma, Y. Cui, X. Cheng, X. Li, M. Xie, and Q. Cheng, Sep. Purif. Technol. 186, 1 (2017).

    Article  Google Scholar 

  36. M. Grandcolas, T. Cottineau, A. Louvet, N. Keller, and V. Keller, Appl. Catal. B Environ. 138–139, 128 (2013).

    Article  Google Scholar 

  37. H. Wang, W. Zhu, B. Chong, and K. Qin, Int. J. Hydrog. Energy 39, 90 (2014).

    Article  Google Scholar 

  38. P. Parhi and V. Manivannan, J. Eur. Ceram. Soc. 28, 1665 (2008).

    Article  Google Scholar 

  39. Z.L. Wang, J. Phys. Condens. Matter 16, 829 (2004).

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial assistance of the Natural Science Foundation of Hunan Provincial of China (No. 2017JJ2108), and the Scientific Research Foundation of Hunan Provincial Education Department of China (No. 15A076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haihua Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Huang, Y., Dai, C. et al. Constructing ZnO/ZnCr2O4@TiO2-NTA Nanocomposite for Photovoltaic Conversion and Photocatalytic Hydrogen Evolution. J. Electron. Mater. 48, 1724–1729 (2019). https://doi.org/10.1007/s11664-019-06927-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-06927-y

Keywords

Navigation