Skip to main content
Log in

Defect-Based Magnetism in Reduced Graphene Oxide-CeO2 Nanocomposites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

CeO2 nanocrystals were grown on reduced graphene oxide (rGO) as nanocomposites via in situ reduction of GO in the presence of cerium nitrate, pursued by hydrothermal treatment. Structural studies confirmed the formation of nanocomposites, which reveal a strong electrostatic interaction between rGO sheets and CeO2. High-resolution transmission electron microscopy images showed that CeO2 nanocrystals with an average size ∼ 10 nm were decorated on the rGO sheets. Chemical composition, mixed valence state and oxygen vacancies of samples were observed using x-ray photoemission spectra. Photoluminescence emission in the visible region also confirmed the existence of defects like oxygen vacancies on the surface of CeO2. The magnetization value of nanocomposites contributes both ferromagnetism at low field and diamagnetism at high field. The role of rGO sheets act as the shell and stabilize oxygen vacancies of CeO2, in which the p orbital of carbon is involved in spin-polarized charge transfer with oxygen vacancies of CeO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S.V. Molnar, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Science 294, 1488 (2001).

    Article  Google Scholar 

  2. S.B. Ogale, Adv. Mater. 22, 3125 (2010).

    Article  Google Scholar 

  3. K.S. Ranjith, P. Saravanan, S.H. Chen, C.L. Dong, C.L. Chen, S.Y. Chen, K. Asokan, and R.T. Rajendra Kumar, J. Phys. Chem. C 118, 27037 (2014).

    Article  Google Scholar 

  4. A. Thurber, K.M. Reddy, V. Shutthanandan, M.H. Engelhard, C. Wang, J. Hays, and A. Punnoose, Phys. Rev. B 76, 165206 (2007).

    Article  Google Scholar 

  5. G. Srinet, R. Kumar, and V. Sajal, J. Appl. Phys. 114, 033912 (2013).

    Article  Google Scholar 

  6. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and R.N.C. Rao, Phys. Rev. B 74, 161306 (2006).

    Article  Google Scholar 

  7. M.Y. Ge, H. Wang, E.Z. Liu, J.F. Liu, J.Z. Jiang, Y.K. Li, Z.A. Xu, and H.Y. Li, Appl. Phys. Lett. 93, 062505 (2008).

    Article  Google Scholar 

  8. H.X. Mai, L.D. Sun, Y.W. Zhang, R. Si, W. Feng, H.P. Zhang, H.C. Liu, and C.H. Yan, J. Phys. Chem. B 109, 24380 (2005).

    Article  Google Scholar 

  9. M. Li, S. Ge, W. Qiao, L. Zhang, Y. Zuo, and S. Yan, Appl. Phys. Lett. 94, 152511 (2009).

    Article  Google Scholar 

  10. R.K. Singhal, P. Kumari, A. Samariya, S. Kumar, S.C. Sharma, Y.T. Xing, and E.B. Saitovitch, Appl. Phys. Lett. 97, 172503 (2010).

    Article  Google Scholar 

  11. S.Y. Chen, C.H. Tsai, M.Z. Huang, D.C. Yan, T.W. Huang, A. Gloter, C.L. Chen, H.J. Lin, C.T. Chen, and C.L. Dong, J. Phys. Chem. C 116, 8707 (2012).

    Article  Google Scholar 

  12. F. Akbar, M. Kolahdouz, S. Larimian, B. Radfar, and H.H. Radamson, J. Mater. Sci. Mater. Electron. 26, 4347 (2015).

    Article  Google Scholar 

  13. Y. Si and E.T. Samulski, Nano Lett. 8, 1679 (2008).

    Article  Google Scholar 

  14. A. Prakash, K.S. Misra, and D. Bahadur, Nanotechnology 24, 095705 (2013).

    Article  Google Scholar 

  15. K. Thiyagarajan, M. Muralidharan, and K. Sivakumar, J. Mater. Sci. Mater. Electron. 29, 7442 (2018).

    Article  Google Scholar 

  16. M. Bonilla, S. Kolekar, Y. Ma, H.C. Diaz, V. Kalappattil, R. Das, T. Eggers, H.R. Gutierrez, M.H. Phan, and M. Batzill, Nat. Nanotechnol. 13, 289 (2018).

    Article  Google Scholar 

  17. K. Thiyagarajan and K. Sivakumar, J. Mater. Sci. 52, 8084 (2017).

    Article  Google Scholar 

  18. Z. Sun, X. Yang, C. Wang, T. Yao, L. Cai, W. Yan, Y. Jiang, F. Hu, J. He, Z. Pan, Q. Liu, and S. Wei, ACS Nano 8, 10589 (2014).

    Article  Google Scholar 

  19. C. Sun, H. Li, H. Zhang, Z. Wang, and L. Chen, Nanotechnology 16, 1454 (2005).

    Article  Google Scholar 

  20. L. Jiang, M. Yao, B. Liu, Q. Li, R. Liu, Z. Yao, S. Lu, W. Cui, X. Hua, B. Zou, T. Cui, and B. Liu, CrystEngComm 15, 3739 (2013).

    Article  Google Scholar 

  21. Z. Ji, X. Shen, M. Li, H. Zhou, H. Zhou, G. Zhu, and K. Chen, Nanotechnology 24, 115603 (2013).

    Article  Google Scholar 

  22. A.S. Dezfuli, M.R. Ganjali, P. Norouzi, and F. Faridbod, J. Mater. Chem. B 3, 2362 (2015).

    Article  Google Scholar 

  23. M. Srivastava, A.K. Das, P. Khanra, M.E. Uddin, N.H. Kim, and J.H. Lee, J. Mater. Chem. A 1, 9792 (2013).

    Article  Google Scholar 

  24. L. Jiang, M. Yao, B. Liu, Q. Li, R. Liu, H. Lu, C. Gong, B. Zou, T. Cui, and B. Liu, J. Phys. Chem. C 116, 11741 (2012).

    Article  Google Scholar 

  25. F. Meng, C. Zhang, Z. Fan, J. Gong, A. Li, Z. Ding, H. Tang, M. Zhang, M. Zhang, and G. Wu, J. Alloy. Compd. 647, 1013 (2015).

    Article  Google Scholar 

  26. D. Joung, V. Singh, S. Park, A. Schulte, S. Seal, and S.I. Khondarker, J. Phys. Chem. C 115, 24494 (2011).

    Article  Google Scholar 

  27. G.H. Jaffari, A. Imrana, M. Bahc, A. Ali, A.S. Bhatti, U.S. Qurashi, and S.I. Shah, Appl. Surf. Sci. 396, 547 (2017).

    Article  Google Scholar 

  28. S. Askrabic, Z.D. Dohcevic-Mitrovic, V.D. Araujo, G. Ionita, M.M. de Lima Jr., and A. Cantarero, J. Phys. D Appl. Phys. 46, 495306 (2013).

    Article  Google Scholar 

  29. V. Fernandes, P. Schio, A.J.A. de Oliveira, W. Aortiz, P. Fichtner, L. Amaral, I.L. Graff, J. Varalda, N. Mattoso, W.H. Schreiner, and D.H. Mosca, J. Phys. Condens. Matter 22, 216004 (2010).

    Article  Google Scholar 

  30. S. Kumar, M. Srivastava, J. Singh, S. Layek, M. Yashpal, A. Materny, and A.K. Ojha, AIP Adv. 5, 027109 (2015).

    Article  Google Scholar 

  31. X. Niu and Y. Liu, Appl. Phys. A 123, 236 (2017).

    Article  Google Scholar 

  32. F. Meng, C. Zhang, Q. Bo, and Q. Zhang, Mater. Lett. 99, 5 (2013).

    Article  Google Scholar 

  33. L. Wang and F. Meng, Mater. Res. Bull. 48, 3492 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Sophisticated Analytical Instrumentation Facility (SAIF), Indian Institute of Technology (IITM), Madras, for support on characterization of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamarajan Thiyagarajan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiyagarajan, K., Muralidharan, M. & Sivakumar, K. Defect-Based Magnetism in Reduced Graphene Oxide-CeO2 Nanocomposites. J. Electron. Mater. 48, 1011–1017 (2019). https://doi.org/10.1007/s11664-018-6824-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6824-2

Keywords

Navigation