Skip to main content
Log in

Interfacial ferromagnetism in reduced graphene oxide–ZnO nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Reduced Graphene Oxide (rGO) and rGO–ZnO nanocomposites have been successfully prepared by hydrothermal and solvothermal method, respectively. Powder XRD and Raman spectroscopy studies confirmed the formation of nanocomposites. The nanostructures of samples were imaged and found that ZnO nanoparticles covered over rGO sheets. The reduction of various oxygen containing functional groups attached on the few layered graphitic planes and the presence of oxygen vacancies in nanocomposites were confirmed by XPS. The relative contribution of PL emission bands in composites arises due to the existence of intrinsic defects. The M–H curve of rGO sheets and rGO–ZnO nanocomposites exhibit ferromagnetic behavior. The decrease of magnetization in composites owing to increases the rGO ratio leads to decrease the oxygen vacancies in the surface of ZnO nanopaticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.A. Garcia, J.M. Merino, E. Fernndez Pinel, A. Quesada, J. de la Venta, M.L. Ruz Gonzlez, G.R. Castro, P. Crespo, J. Llopis, J.M. Gonzlez-Calbet, A. Hernando, Magnetic properties of ZnO nanoparticles. Nano Lett. 7, 1489–1494 (2007)

    CAS  Google Scholar 

  2. T. Dietl, Dilute magnetic semiconductors: functional ferromagnets. Nature Mater. 2, 646–648 (2003)

    CAS  Google Scholar 

  3. T. Kataoka, M. Kobayashi, Y. Sakamoto, G.S. Song, A. Fujimori, F.-H. Chang, H.-J. Lin, D.J. Huang, C.T. Chen, T. Ohkochi, Y. Takeda, T. Okane, Y. Saitoh, H. Yamagami, A. Tanaka, S.K. Mandal, T.K. Nath, D. Karmakar, I. Dasgupta, Electronic structure and magnetism of the diluted magnetic semiconductor Fe-doped ZnO nanoparticles. J. Appl. Phys. 107, 033718 (2010)

    Google Scholar 

  4. H. Gu, W. Zhang, Y. Xu, M. Yan, Effect of oxygen deficiency on room temperature ferromagnetism in Co doped ZnO. Appl. Phys. Lett. 100, 202401 (2012)

    Google Scholar 

  5. G. Srinet, R. Kumar, V. Sajal, Structural, optical, vibrational, and magnetic properties of sol-gel derived Ni doped ZnO nanoparticles. J. Appl. Phys. 114, 033912 (2013)

    Google Scholar 

  6. S.U. Awan, S.K. Hasanain, M.F. Bertino, G.H. Jaffari, Ferromagnetism in Li doped ZnO nanoparticles: the role of interstitial Li. J. Appl. Phys. 112, 103924 (2012)

    Google Scholar 

  7. T.-L. Phan, Y.D. Zhang, D.S. Yang, N.X. Nghia, T.D. Thanh, S.C. Yu, Defect-induced ferromagnetism in ZnO nanoparticles prepared by mechanical milling. Appl. Phys.Lett. 102, 072408 (2013)

    Google Scholar 

  8. X. Xu, C. Xu, J. Dai, J. Hu, F. Li, S. Zhang, Size dependence of defect-induced room temperature ferromagnetism in undoped ZnO nanoparticles. J. Phys. Chem. C 116, 8813–8818 (2012)

    CAS  Google Scholar 

  9. B.B. Stramual, S.G. Protasova, A.A. Mazilkin, G. Schutz, E. Goering, B. Baretzky, P.B. Straumal, Ferromagnetism of zinc oxide nanograined films. JETP Lett. 97, 6 (2013)

    Google Scholar 

  10. P. Kumar, H.K. Malik, K. Asokan, Tuning of optical band gap and magnetization of C- implanted ZnO thin films. EPL 110, 67006 (2015)

    Google Scholar 

  11. S. Deng, H. Fan, M. Wang, M.M. Zheng, J. Yi, R. Wu. H. Tan, C. Sow, J. Ding, Y. Feng, K. Loh, Thiol-Capped ZnO nanowires/nanotube arrays with tunable ferromagnetic properties at room temperature. ACS Nano. 4, 495–505 (2010)

    CAS  Google Scholar 

  12. Y.-C. Chen, Z. Wang, A. Leineweber, J. Baier, T. Tietze, F. Phillipp, G. Schutz, E. Goering, Effect of surface configurations on the room-temperature magnetism of pure ZnO. J. Mater. Chem. C 4, 4166 (2016)

    CAS  Google Scholar 

  13. J. Chaboy, R. Boada, C. Piquer, M.A. Laguna-Marco, M. García-Hernández, N. Carmona, J. Llopis, M.L. Ruíz-González, J. González-Calbet, J.F. Fernández, M.A. García, Evidence of intrinsic magnetism in capped ZnO nanoparticles. Phys. Rev. B 82, 064411 (2010)

    Google Scholar 

  14. G. Jayalakshmi, N. Gopalakrishnan, T. Balasubramanian, Activation of room temperature ferromagnetism in ZnO films by surface functionalization with thiol and amine. J. Alloy. Compd. 551, 667–671 (2013)

    CAS  Google Scholar 

  15. Z. Xiang, J. Qian, Y. Zhou, F. Liu, C. Qi, X. Shi, G. Wang, S. Ye, Synthesis of quasi-core–shell Co-doped ZnO/graphene nanoparticles. Mater. Lett. 161, 286–288 (2015)

    CAS  Google Scholar 

  16. N. Tu, N.H. Dung, N.T. Lan, K.T. Nguyen, N.D. Dung, D.X. Viet, N.T. Tuan, H.V. Bui, D.V. Nam, P.T. Huy, N. Saito, Enhanced ferromagnetism in graphite-like carbon layer-coated ZnO crystals. J. Alloy. Compd. 695, 233–237 (2017)

    CAS  Google Scholar 

  17. F. Akbar, M. Kolahdouz, Sh Larimian, B. Radfar, H.H. Radamson, Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics and nanosensing. J. Mater. Sci. 26, 4347–4379 (2015)

    CAS  Google Scholar 

  18. H.A.M. Vozmediano, L.P.M. Sancho, T. Stauber, F. Guinea, Local defects and ferromagnetism in graphene layers. Phys. Rev. B 72, 155121 (2005)

    Google Scholar 

  19. R.L. Radovic, B. Bockrath, On the chemical nature of graphene edges: Origin of stability and potential for magnetism in carbon materials. J. Am. Chem. Soc. 127, 5917–5927 (2005)

    CAS  Google Scholar 

  20. Y. Wang, Y. Huang et al., Room-temperature ferromagnetism of graphene. Nano Lett. 9, 220–224 (2009)

    CAS  Google Scholar 

  21. S. Qin, P. Sun, Q. Di, S. Zhou, C. Yang, Q. Xu, Ferromagnetism of three-dimensional graphene framework. RSC Adv. 5, 92899–92904 (2015)

    CAS  Google Scholar 

  22. Z. Sun, X. Yang, C. Wang, T. Yao, L. Cai, W. Yan, Y. Jiang, F. Hu, J. He, Z. Pan, Q. Liu, S. Wei, Graphene activating room-temperature ferromagnetic exchange in cobalt-doped ZnO dilute magnetic semiconductor quantum dots. ACS Nano. 8, 10589–10596 (2014)

    CAS  Google Scholar 

  23. A. Prakash, S.K. Misra, D. Bahadur, The role of reduced graphene oxide capping on defect induced ferromagnetism of ZnO nanorods. Nanotechnology. 24, 095705 (2013)

    Google Scholar 

  24. K. Thiyagarajan, K. Sivakumar, Oxygen vacancy-induced room temperature ferromagnetism in graphene–SnO2 nanocomposites. J. Mater. Sci. 52, 8084–8096 (2017)

    CAS  Google Scholar 

  25. K. Thiyagarajan, M. Muralidharan, K. Sivakumar, Defects-induced magnetism in WO3 and reduced graphene oxide-WO3 nanocomposites. J. Supercond. Nov. Magn. 31, 117–125 (2018)

    CAS  Google Scholar 

  26. G. Khurana, N. Kumar, R.K. Kotnala, T. Nautiyal, R.S. Katiyar, Temperature tuned defect induced magnetism in reduced graphene oxide. Nanoscale 5, 3346–3351 (2013)

    CAS  Google Scholar 

  27. Y. Bu, Z. Chen, W. Li, B. Hou, Highly efficient photocatalytic performance of Graphene—ZnO quasi-shell—core composite material., ACS Appl. Mater. Interfaces 5, 12361–12368 (2013)

    CAS  Google Scholar 

  28. Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, P.K. Loh, Hydrothermal dehydration for the “Green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 21, 2950–2956 (2009)

    CAS  Google Scholar 

  29. S. Qin, X. Guo, Y. Cao, Z. Ni, Q. Xu, Strong ferromagnetism of reduced graphene oxide. Carbon. 78, 559–565 (2014)

    CAS  Google Scholar 

  30. T.N. Reddy, J. Manna, R.K. Rana, Polyamine-mediated interfacial assembly of rGO-ZnO nanostructures: a bio-inspired approach and enhanced photocatalytic properties. ACS Appl. Mater. Interfaces. 7, 19684–19690 (2015)

    CAS  Google Scholar 

  31. D.I. Son, B.W. Kwon, D.H. Park, W.-S. Seo, Y. Yi, B. Angadi, C.-L. Lee, W.K. Choi, Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 7, 465–471 (2012)

    CAS  Google Scholar 

  32. A. Prakash, D. Bahadur, The role of ionic electrolytes on capacitive performance of ZnO-reduced graphene oxide nanohybrids with thermally tunable morphologies. ACS Appl. Mater. Interfaces 6, 1394–1405 (2014)

    CAS  Google Scholar 

  33. Z. Gao, J. Zhang, Y. Fu, J. Xu, D. Qi, Xue, Room temperature ferromagnetism of pure ZnO nanoparticles. Appl. Phys. Let. 105, 113928 (2009)

    Google Scholar 

  34. X. Pan, M.-Q. Yang, Y.-J. Xu, Morphology control, defect engineering and photoactivity tuning of ZnO crystals by graphene oxide—a unique 2D macromolecular surfactant. Phys. Chem. Chem. Phys. 16, 5589–5599 (2014)

    CAS  Google Scholar 

  35. X. Xue, L. Liu, Z. Wang, Y. Wu, Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles. J. Appl. Phys. 115, 033902 (2014)

    Google Scholar 

  36. S. Ghose, A. Sarkar, S. Chattopadhyay, M. Chakrabarti, D. Das, T. Rakshit, S.K. Ray, D. Jana, Surface defects induced ferromagnetism in mechanically milled nanocrystalline ZnO. J. Appl. Phys. 114, 073516 (2013)

    Google Scholar 

  37. R.K. Biroju, N. Tilak, G. Rajender, S. Dhara, P.K. Giri, Catalyst free growth of ZnO nanowires on graphene and graphene oxide and its enhanced photoluminescence and photoresponse. Nanotechnology 26, 145601 (2015)

    Google Scholar 

  38. T. Taniguchi, H. Yokoi, M. Nagamine, H. Tateishi, A. Funatsu, K. Hatakeyama, C. Ogata, M. Ichida, H. Ando, M. Koinuma, Y. Matsumoto, Correlated optical and magnetic properties in photoreduced graphene oxide. J. Phys. Chem. C 118, 28258–28265 (2014)

    CAS  Google Scholar 

  39. T. Tang, N. Tang, Y. Zheng, X. Wan, Y. Liu, F. Liu, Q. Xu, Y. Du, Robust magnetic moments on the basal plane of the graphene sheets effectively induced by OH groups. Sci. Rep. 5, 8448 (2015)

    CAS  Google Scholar 

  40. A. Diamantopoulo, S. Glenis, G. Zolnierkiwicz, N. Guskos, V. Likodimos, Magnetism in pristine and chemically reduced graphene oxide. J. Appl. Phys. 121, 043906 (2017)

    Google Scholar 

  41. K. Bagani, M.K. Ray, B. Satpati, N. R.Ray, M. Sarder, S. Banerjee, Contrasting magnetic properties of thermally and chemically reduced graphene oxide. J. Phys. Chem. C 118, 13254–13259 (2014)

    CAS  Google Scholar 

  42. D. Lee, J. Seo, Magnetic frustration of graphite oxide. Sci. Rep. 7, 44690 (2017)

    CAS  Google Scholar 

  43. J. Chen, W. Zhang, Y. Sun, Y. Zheng, N. Tang, Y. Du, Creation of localized spins in graphene by ring-opening of epoxy derived hydroxyl. Sci. Rep. 6, 26862 (2016)

    CAS  Google Scholar 

  44. K. Bagani, A. Bhattacharya, J. Kaur, A. Rai Chowdhury, B. Ghosh, M. Sardar, S. Banerjee, Anomalous behavior of magnetic coercivity in graphene oxide and reduced graphene oxide. J. Appl. Phys. 115, 023902 (2014)

    Google Scholar 

  45. S. Qin, Q. Xu, Room temperature ferromagnetismin N2 plasma treated graphene oxide. J. Alloy. Compd. 692, 332–338 (2017)

    CAS  Google Scholar 

  46. B. Panigrahy, M. Aslam, D.S. Misra, M. Ghosh, D. Bahadur, Defect-related emissions and magnetization properties of ZnO nanorods. Adv. Funct. Mater. 20, 1161–1165 (2010)

    CAS  Google Scholar 

  47. W. Liu, W. Li, Z. Hu, Z. Tang, X. Tang, Effect of oxygen defects on ferromagnetic of undoped ZnO. J. Appl. Phys. 110, 013901 (2011)

    Google Scholar 

  48. P. Zhan, W. Wang, C. Liu, Z. Li, Z. Zhang, P. Zhang, B. Wang, X. Cao, oxygen vacancy-induced ferromagnetism in un-doped ZnO thin films. J. Appl. Phys. 111, 033501 (2012)

    Google Scholar 

  49. T. Tietze, P. Audehm, Y.-C. Chen, G. Schtz, B.B. Straumal, S.G. Protasova, A.A. Mazilkin, P.B. Straumal, T. Prokscha, H. Luetkens, Z. Salman, A. Suter, B. Baretzky, K. Fink, W. Wenzel, D. Danilov, E. Goering, Interfacial dominated ferromagnetism in nanograined ZnO: a µSR and DFT study. Sci. Rep. 5, 8871 (2015)

    CAS  Google Scholar 

  50. Z. Li, W. Zhong, X. Li, H. Zeng, G. Wang, W. Wang, Z. Yang, Y. Zhang, Strong room-temperature ferromagnetism of ZnO nanostructure arrays via colloidal template. J. Mater. Chem. C 1, 6807–6812 (2013)

    CAS  Google Scholar 

  51. K. Saravanan, G. Jayalakshmi, S. Chandra, B.K. Panigrahi, R. Krishnan, B. Sundaravel, S. Annapoorani, D.K. Shukla, P. Rajput, D. Kanjilal, The influence of carbon concentration on the electronic structure and magnetic properties of carbon implanted ZnO thin films. Phys. Chem. Chem. Phys. 19, 13316–13323 (2017)

    CAS  Google Scholar 

  52. X. Battle, A. Labarta, Finite-size effects in fine particles: magnetic and transport properties. J. Phys. D 35, R15–R42 (2002)

    Google Scholar 

Download references

Acknowledgements

Authors acknowledged to Sophisticated Analytical Instrumentation Facility (SAIF), Indian Institute of Technology (IITM), Madras for this support on characterization of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamarajan Thiyagarajan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiyagarajan, K., Muralidharan, M. & Sivakumar, K. Interfacial ferromagnetism in reduced graphene oxide–ZnO nanocomposites. J Mater Sci: Mater Electron 29, 7442–7452 (2018). https://doi.org/10.1007/s10854-018-8735-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8735-7

Navigation