Skip to main content
Log in

Design Optimization of an Anisotropic Magnetoresistance Sensor for Detection of Magnetic Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Recent studies have shown that the magnetic field sensitivity of an anisotropic magnetoresistance (AMR) sensor using a single-layer Ni80Fe20 thin film can be considerably improved by increasing the shape anisotropy of the film. In this work, an effective approach for improving the sensitivity and reducing the magnetic coercive field as well as the thermal noise contribution in an AMR Wheatstone bridge sensor is proposed by combining multiple resistors in the series–parallel combination circuits. Four different AMR sensor designs, consisting of a single resistor, three and five resistors in series and six resistors in series–parallel connection, were fabricated by using Ta (10 nm)/Ni80Fe20 (5 nm)/Ta (10 nm) films grown on thermally oxidized Si substrates under the presence and the absence of a biasing magnetic field (900 Oe). The results showed that the sensors based on series–parallel combination gain a magnetic sensitivity (SH) 1.72 times higher than that of the sensor based on the series connection. This optimized sensor has improved the capacity of detecting various concentrations of magnetic nanoparticles with a detection limit of magnetic moments estimated to be about 0.56 μemu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Haji-Sheikh and Y. Yoo, J. Int. Intell. Syst. Technol. Appl. 3, 95 (2007)

    Google Scholar 

  2. L.K. Quynh, B.D. Tu, D.X. Dang, D.Q. Viet, L.T. Hien, D.T.H. Giang, and N.H. Duc, J. Sci. Adv. Mater. Dev. 1, 98 (2016).

    Google Scholar 

  3. D. Henriksen, B.T. Dealslet, D.H. Skieller, K.H. Lee, F. Okkels, and M.F. Hansen, Appl. Phys. Lett. 97, 013507 (2010).

    Article  Google Scholar 

  4. P. Mlejnek, M. Vopálenský, and P. Ripka, Sens. Actuators A 141, 649 (2008).

    Article  Google Scholar 

  5. A. Persson, R.S. Bejhed, H. Nguyen, K. Gunnarsson, B.T. Dalslet, and F.W. Østerberg, Sens. Actuators A 171, 212 (2011).

    Article  Google Scholar 

  6. A.D. Henriksen, B.T. Dalslet, D.H. Skieller, K.H. Lee, F. Okkels, and M.F. Hansen, Appl. Phys. Lett. 97, 013507 (2010).

    Article  Google Scholar 

  7. M. Doescher, Magnetoresistive sensor having a strip-shaped conductor and a screening strip, United States Patent (2006).

  8. J.B. Johnson, Nature 20, 119 (1927).

    Google Scholar 

  9. Y.-C. Liang, L. Chang, W. Qiu, A.G. Kolhatkar, B. Vu, K. Kourentzi, T. Randall Lee, Y. Zu, R. Willson, and D. Litvinov, Sensors 17, 1296 (2017).

    Article  Google Scholar 

  10. G. Li, S. Sun, R.J. Wilson, R.L. White, N. Pourmand, and S.X. Wang, Sens. Actuators A 126, 98 (2006).

    Article  Google Scholar 

  11. W. Wang, Y. Wang, T. Liang, Y. Feng, T. Klein, and J.-P. Wang, Sci. Rep. 4, 5716 (2014).

    Article  Google Scholar 

  12. S.X. Wang and G. Li, IEEE Trans. Magn. 44, 1687 (2008).

    Article  Google Scholar 

  13. J. Devkota, C. Wang, A. Ruiz, S. Mohapatra, and P. Mukherjee, J. Appl. Phys. 113, 104701 (2013).

    Article  Google Scholar 

  14. J. Devkota, G. Kokkinis, T. Berris, M. Jamalieh, S. Cardoso, F. Cardoso, H. Srikanth, M.H. Phan, and I. Giouroudi, RSC Adv. 5, 51169 (2015).

    Article  Google Scholar 

  15. S. Ingvarsson, G. Xiao, S.S.P. Parkin, and W.J. Gallagher, J. Magn. Magn. Mater. 251, 202 (2002).

    Article  Google Scholar 

  16. Y. Zhang, Z. Dong, W. Yu-Kun, Y. Yu-Li, H. Zhao-Cong, L. Chen, and Z. Ya, Chin. Phys. B 22, 056801 (2013).

    Article  Google Scholar 

  17. M. Volmer and M. Avram, Microelectron. Eng. 108, 116 (2013).

    Article  Google Scholar 

  18. B.D. Tu, T.Q. Hung, N.T. Thanh, T.M. Danh, N.H. Duc, and C. Kim, J. Appl. Phys. 104, 074701 (2008).

    Article  Google Scholar 

  19. D.T.H. Giang, D.X. Dang, N.X. Toan, N.V. Tuan, A.T. Phung, and N.H. Duc, Rev. Sci. Instrum. 88, 015005 (2017).

    Article  Google Scholar 

  20. L.T. Hien, L.K. Quynh, V.T. Huyen, B.D. Tu, N.T. Hien, D.M. Phuong, P.H. Nhung, D.T.H. Giang, and N.H. Duc, Adv. Nat. Sci. Nanosci. Nanotechnol. 7, 045006 (2016).

    Article  Google Scholar 

  21. M. Volmer and M. Avram, J. Magn. Magn. Mater. 381, 481 (2015).

    Article  Google Scholar 

  22. W. Wang, Y. Wang, T. Liang, Y. Feng, T. Klein, and J.-P. Wang, Sci. Rep. 4, 5716 (2014).

    Article  Google Scholar 

  23. G. Lin, D. Makarov, M. Melzer, W. Si, C. Yanac, and O. Schmidt, Lab Chip 14, 4050 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. K. Quynh or D. T. Huong Giang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quynh, L.K., Tu, B.D., Anh, C.V. et al. Design Optimization of an Anisotropic Magnetoresistance Sensor for Detection of Magnetic Nanoparticles. J. Electron. Mater. 48, 997–1004 (2019). https://doi.org/10.1007/s11664-018-6822-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6822-4

Keywords

Navigation