Abstract
Carbon materials are among the most commonly used components of supercapacitor electrodes. Particularly, active carbons are recognized as cheap, available, and easily tailored materials. However, the carbon family, i.e. carbon products and carbon precursors, consists of many members. In this manuscript some of these materials, including laboratory scale-produced carbon gels, carbon nanotubes and carbonized materials, as well as industrial scale-produced graphites, pitches, coke and coal, were compared. Discussion was preceded by a short history of supercapacitors and review of each type of tested material, from early beginning to state-of-the-art. Morphology and structure of the materials were analyzed (specific surface area, pore volume and interlayer spacing determination), to evaluate their applicability in energy storage. Thermal analysis was used to determine the stability and purity. Finally, electrochemical evaluation using cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy was performed. Outcomes of each analytical technique were summarized in different sections.
References
S.E. Chang, T.L. McDaniels, J. Mikawoz, and K. Peterson, Nat. Hazards 41, 337 (2007).
P. Hines, J. Apt, and S. Talukdar, Energy Policy 37, 5249 (2009).
P. Kurzweil, A. Hildebrand, and M. Weiß, ChemElectroChem 2, 150 (2015).
S. Ducharme, ACS Nano 3, 2447 (2009).
P. Sharma and T.S. Bhatti, Energy Convers. Manag. 51, 2901 (2010).
H.I. Becker, Patent US2800616A, by General Electric Company (1957)
R.A. Rightmire, Patent US3288641A, by Standard Oil Co (1962)
J.W. Sprague, Patent US3615829A, by Standard Oil Co (1965)
M. Endo, T. Takeda, Y.J. Kim, K. Koshiba, and K. Ishii, Carbon Lett. 1, 117 (2001).
M. Hosokawa, K. Sanada, and T. Kawamura, Patent US4313084A, by NEC Corp (1978)
V. Augustyn, P. Simon, and B. Dunn, Energ. Environ. Sci. 7, 1597 (2014).
N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, and J. Thomas, Adv. Mater. 29, 1605336 (2017).
H.L.F. von Helmholtz, Ann. Phys. Berl. 243, 337 (1879).
F. Beguin, V. Presser, A. Balducci, and E. Frackowiak, Adv. Mater. 26, 2219 (2014).
M. Gouy, J. Phys. Théor. Appl. 9, 457 (1910).
D.L. Chapman, Philos. Mag. 25, 457 (1913).
O. Stern, Z. Elektrochem. Angew. Phys. Chem. 30, 508 (1924).
A. Gonzalez, E. Goikolea, J.A. Barrena, and R. Mysyk, Renew. Sust. Energ. Rev. 58, 1189 (2016).
B. Kastening and S. Spinzig, J. Electroanal. Chem. 214, 295 (1986).
A.C. Forse, C. Merlet, J.M. Griffin, and C.P. Grey, J. Am. Chem. Soc. 138, 5731 (2016).
F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, and W. Huang, Chem. Soc. Rev. 46, 6816 (2017).
V. Musolino, A. Pievatolo, and E. Tironi, Energy 36, 6697 (2011).
M. Winter and R.J. Brodd, Chem. Rev. 104, 4245 (2004).
Y. Hori, IEEJ Trans. Electr. Electr. 4, 231 (2009).
B.K. Deka, A. Hazarika, J. Kim, Y.B. Park, and H.W. Park, Int. J. Energy Res. 41, 1397 (2017).
E. Karden, S. Ploumen, B. Fricke, T. Miller, and K. Snyder, J. Power Sources 168, 2 (2007).
V.A. Shah, J.A. Joshi, R. Maheshwari, and R. Roy, in Proceedings of the 15th National Power System Conference, IIT Bombay (2008), p. 142
V. Ruiz, C. Blanco, E. Raymundo-Pinero, V. Khomenko, F. Beguin, and R. Santamaria, Electrochim. Acta 52, 4969 (2007).
W. Lu, L. Qu, K. Henry, and L. Dai, J. Power Sources 189, 1270 (2009).
R. Lin, P.L. Taberna, S. Fantini, V. Presser, C.R. Perez, F. Malbosc, N.L. Rupesinghe, K.B.K. Teo, Y. Gogotsi, and P. Simon, J. Phys. Chem. Lett. 2, 2396 (2011).
R.G. Roggers and K.R. Seddon, Science 302, 792 (2003).
C. Portet, M.A. Lillo-Rodenas, A. Linares-Solano, and Y. Gogotsi, Phys. Chem. Chem. Phys. 11, 4943 (2009).
L. Eliad, E. Pollak, N. Levy, G. Salitra, A. Soffer, and D. Aurbach, Appl. Phys. A 82, 607 (2006).
Y.J. Kim, Y. Horie, S. Ozaki, Y. Matsuzawa, H. Suezaki, C. Kim, N. Miyashita, and M. Endo, Carbon 42, 1491 (2004).
V.M. Gun’ko, V.V. Turov, O.P. Kozynchenko, V.G. Nikolaev, S.R. Tennison, S.T. Meikle, E.A. Snezhkova, A.S. Sidorenko, F. Ehrburger-Dolle, I. Morfin, D.O. Klymchuk, and S.V. Mikhalovsky, Adsorption 17, 453 (2011).
T. Zhang, J. Lang, L. Liu, L. Liu, H. Li, Y. Gu, X. Yan, and X. Ding, Chin. Chem. Lett. 28, 2212 (2017).
L. Jiang, J. Wang, X. Mao, X. Xu, B. Zhang, J. Yang, Y. Wang, J. Zhu, and S. Hou, Carbon 111, 207 (2017).
S. Rodrigues, M. Marques, I. Suarez-RuizI, D. Camean, and B.Kwiecinska Flores, Int. J. Coal Geol. 111, 67 (2013).
B. Kwiecinska and H.I. Petersen, Int. J. Coal Geol. 57, 99 (2004).
P. Beghein, G. Berlioux, B. du Mesnildot, F. Hiltmann, and M. Melin, Nucl. Eng. Des. 251, 146 (2012).
M. Wissler, J. Power Sources 156, 142 (2006).
W.M. Goldberger, P.R. Carney, R.F. Markel, and F.J. Deutschle, Granular Grahitic Carbon. Petroleum Derived Carbons (Washington: American Chemical Society, 1986), pp. 200–214.
F.J. Luque, J.M. Huizenga, E. Crespo-Feo, H. Wada, L. Ortega, and J.F. Barrenechea, Miner. Depos. 49, 261 (2014).
N. Murdie and I.A.S. Edwards, J. Mater. Sci. 20, 171 (1985).
O. Khvostikova, H. Hermann, H. Wendrock, T. Gemming, J. Thomas, and H. Ehrenberg, J. Mater. Sci. 46, 2422 (2011).
P.L. Zaleski, D.J. Derwin, and R.J. Girkant, Patent US6287694B1, by Superior Graphite Co (1998)
J.W. Patrick and S. Hanson, Pore Structure of Graphite, Coke and Composites, in Handbook of Porous Solids, ed. F. Schuth, K.S.W. Sing, and J. Weitkamp (Weinheim: Wiley-VCH, 2002), pp. 1900–1922.
L. Edwards, JOM 67, 308 (2015).
E.I. Andreikov, O.V. Krasnikova, and I.S. Amosova, Coke Chem. 53, 311 (2010).
S. Patel, Rev. Environ. Sci. Biotechnol. 11, 365 (2012).
M.N. Alaya, B.S. Girgis, and W.E. Mourad, J. Porous Mat. 7, 509 (2000).
N. Arena, J. Lee, and R. Clift, J. Clean. Prod. 125, 68 (2016).
J. Mort, R. Ziolo, M. Machonkin, D.R. Huffman, and M.I. Fergusson, Chem. Phys. Lett. 186, 284 (1991).
C. Wen, J. Li, K. Kitazawa, T. Aida, I. Honma, H. Komiyama, and K. Yamada, Appl. Phys. Lett. 61, 2162 (1992).
W. Yang, K.R. Ratinac, S.P. Ringer, P. Thordarson, J.J. Gooding, and F. Braet, Angew. Chem. Ger. Edit. 49, 2114 (2010).
W. Ren and H.M. Cheng, Nat. Nanotechnol. 9, 726 (2014).
M. Wilk, A. Magdziarz, I. Kalemba, and P. Gara, Renew. Energy 85, 507 (2016).
A.C. Pierre, History of aerogels, in Advances in Sol–Gel Derived Materials and Technologies, Aerogels Handbook, ed. M.A. Aegerter, N. Leventis, and M.M. Koebel (New York: Springer, 2011), pp. 3–18.
M. Mastragostino, C. Arbizzani, and F. Soavi, J. Power Sources 97–98, 812 (2001).
M. Yassine and D. Fabris, Energies 10, 1340 (2017).
X.F. Wang, Z. Chang, M. Li, and Y. Wu, Nanocarbon-based materials for asymmetric supercapacitors, in Nanocarbons for Advanced Energy Storage, ed. X. Feng (New York: Wiley, 2015), pp. 379–415.
H. Jankowska, A. Świątkowski, and J. Choma, Active Carbon (Chichester: Ellis Horwood Ltd., 1991), p. 280.
R.Ch. Bansal and M. Goyal, Activated Carbon Adsorption (New York: CRC Press, 2005), pp. 1–520.
H. Marsh and F.R. Reinoso, Activated Carbon, 1st ed. (Oxford: Elsevier Science, 2006), pp. 1–554.
H. Teng, T.S. Yih, and L.Y. Hsu, Carbon 36, 1387 (1998).
Y.V. Pokonova, Carbon 34, 411 (1996).
Y. Uraki, Y. Tamai, M. Ogawa, S. Gaman, and S. Tokura, BioResources 4, 205 (2009).
M.S. Solum, R.J. Pugmire, M. Jagtoyen, and F. Derbyshire, Carbon 33, 1247 (1995).
E. Schroöder, K. Thomauske, C. Weber, A. Hornung, and V. Tumiatti, J. Anal. Appl. Pyrol. 79, 106 (2007).
N.M. Nor, L.L. Chung, L.K. Teong, and A.R. Mohamed, J. Environ. Chem. Eng. 1, 658 (2013).
V. Dodevski, B. Janković, M. Stojmenović, S. Krstić, J. Popović, M.C. Pagnacco, M. Popović, and S. Pašalić, Colloids Surf. A 522, 83 (2017).
W. Tang, Y. Zhang, Y. Zhong, T. Shen, X. Wang, X. Xia, and J. Tu, Mater. Res. Bull. 88, 234 (2017).
C. Rodriguez Correa, T. Otto, and A. Kruse, Biomass Bioenergy 97, 53 (2017).
P. González-García, Renew. Sustain. Energy Rev. 82, 1393 (2018).
A.J. Romero-Anaya, M. Ouzzine, M.A. Lillo-Ródenas, and A. Linares-Solano, Carbon 68, 296 (2014).
P. Costa Vilella, J. Alves Lira, D.C.S. Azevedo, M. Bastos-Neto, and R. Stefanuttia, Ind. Crop. Prod. 109, 134 (2017).
X. Zhu, Y. Gao, Q. Yue, Y. Kan, W. Kong, and B. Gao, Ecotoxcol. Environ. Saf. 145, 289 (2017).
J. Wang, T.L. Liu, Q.X. Huang, Z.Y. Ma, Y. Chi, and J.H. Yan, Fuel Process. Technol. 162, 13 (2017).
A. Jain, R. Balasubramanian, and M.P. Srinivasan, Chem. Eng. J. 283, 789 (2016).
H. Laksaci, A. Khelifi, M. Trari, and A. Addoun, J. Clean. Prod. 147, 254 (2017).
A.B. Fadhil, A.I. Ahmed, and H.A. Salih, Fuel 187, 435 (2017).
S. Uçar, M. Erdem, T. Tay, and S. Karagöz, Appl. Surf. Sci. 255, 8890 (2009).
H. Sayğılı and F. Güzel, J. Clean. Prod. 113, 995 (2016).
J.H. Tay, X.G. Chen, S. Jeyaseelan, and N. Graham, Chemosphere 44, 45 (2001).
X. Chen, S. Jeyaseelan, and N. Graham, Waste Manag. 22, 755 (2002).
G. Xu, X. Yang, and L. Spinosa, J. Environ. Manag. 151, 221 (2015).
A. Gupta and A. Garg, Clean Technol. Environ. 17, 1619 (2015).
C. Wu, M. Song, B. Jin, Y. Wu, and Y. Huang, J. Environ. Sci. 25, 405 (2013).
E.L.K. Mui, W.H. Cheung, M. Valix, and G. McKay, Microporous Mesoporous Mater. 130, 287 (2010).
P. Hadi, K.Y. Yeung, J. Guo, H. Wang, and G. McKay, J. Environ. Manag. 170, 1 (2016).
A.S. Al-Rahbi and P.T. Williams, Waste Manag. 49, 188 (2016).
W.K. Lafi, Biomass Bioenergy 20, 57 (2001).
G. San Miguel, G.D. Fowler, and C.J. Sollars, Carbon 41, 1009 (2003).
N.A. Rashidi and S. Yusup, Chem. Eng. J. 314, 277 (2017).
X.F. Tan, S.B. Liu, Y.G. Liu, Y.L. Gu, G.M. Zeng, X.J. Hu, X. Wang, S.H. Liu, and L.H. Jiang, Bioresour. Technol. 227, 359 (2017).
F. Rodriguez-Reinoso, M. Molina-Sabio, and M.T. Gonzalez, Carbon 33, 15 (1995).
M. Molina-Sabio, F. Rodriguez-Reinoso, F. Caturla, and M.J. Sellés, Carbon 34, 457 (1996).
D.H. Everett, Pure Appl. Chem. 31, 577 (1972).
Q. Wang, X. Zhu, Y. Liu, Y. Fang, X. Zhou, and J. Bao, Carbon 127, 658 (2018).
M.A. Adekunle and N.A. Farid, Renew. Sustain. Energy Rev. 52, 1282 (2015).
A. Volperts, G. Dobele, A. Zhurinsh, D. Vervikishko, E. Shkolnikov, and J. Ozolinsh, New Carbon Mater. 32, 319 (2017).
N. Guo, M. Li, X. Sun, F. Wang, and R. Yang, Mater. Chem. Phys. 201, 399 (2017).
W. Li, Y. Ding, W. Zhang, Y. Shu, L. Zhang, F. Yang, and Y. Shen, J. Taiwan Inst. Chem. Eng. 64, 166 (2016).
L.D. Landau, Phys. Z. Sowjetunion 11, 26 (1937).
R. Peierls, Ann. Inst. Henri Poincaré 5, 177 (1935).
P.R. Wallace, Phys. Rev. 71, 622 (1947).
H.P. Boehm, A. Clauss, G.O. Fischer, and U. Hofamnn, Z. Naturforsch. B 17b, 150 (1962).
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).
U. Khan, A. O’Neill, M. Lotya, S. De, and J.N. Coleman, Small 6, 864 (2010).
B.C. Brodie, On the atomic weight of graphite. Philos. Trans. R. Soc. 149, 249 (1859).
L. Staudenmaier, Ber. Dtsch. Chem. Ges. 31, 1481 (1898).
W.S. Hummers Jr and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).
H. He, T. Riedl, A. Lerf, and J. Klinowski, J. Phys. Chem. 100, 19954 (1996).
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, and R.S. Ruoff, Carbon 45, 1558 (2007).
Y. Si and E.T. Samulski, Nano Lett. 8, 1679 (2008).
X. Mei and J. Ouyang, Carbon 49, 5389 (2011).
M.J. Fernández-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J.M.D. Tascón, J. Phys. Chem. C 114, 6426 (2010).
S. Pei and H.-M. Cheng, Carbon 50, 3210 (2012).
L.J. Cote, R. Cruz-Silva, and J. Huang, J. Am. Chem. Soc. 131, 11027 (2009).
P.V. Kamat, Chem. Rev. 93, 267 (1993).
C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, and W.A. de Heer, J. Phys. Chem. B 108, 19912 (2004).
W. Strupiński, K. Grodecki, A. Wysmolek, R. Stępniewski, T. Szkopek, P.E. Gaskell, A. Gruneis, D. Haberer, R. Bożek, J. Krupka, and J.M. Baranowski, Nano Lett. 11, 1786 (2011).
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B.H. Hong, Nature 457, 706 (2009).
M. Pumera, Chem. Rec. 9, 211 (2009).
G. Liang, N. Neophytou, M.S. Lundstrom, and D.E. Nikonov, J. Appl. Phys. 102, 054307-1 (2007).
X. Wang, L. Zhi, and K. Müllen, Nano Lett. 8, 323 (2008).
D.S. Su, N. Maksimova, J.J. Delgado, N. Keller, G. Mestl, M.J. Ledoux, and R. Schlögl, Catal. Today 102–103, 110 (2005).
L.V. Radushkevich and V.M. Lukyanovich, Z. Fiz. Khim. 26, 88 (1952).
S. Iijima, Nature 354, 56 (1991).
S. Hong and S. Myung, Nat. Nanotechnol. 2, 207 (2007).
G.J. Brady, A.J. Way, N.S. Safron, H.T. Evensen, P. Gopalan, and M.S. Arnold, Sci. Adv. 2, 1 (2016).
E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, Nano Lett. 6, 96 (2006).
D. Janas, A. Cabrero-Vilatela, J. Bulmer, L. Kurzepa, and K.K. Koziol, Carbon 64, 305 (2013).
D. Janas, K.Z. Milowska, P.D. Bristowe, and K.K.K. Koziol, Nanoscale 9, 3212 (2017).
A. Lekawa-Raus, L. Kurzepa, X. Peng, and K. Koziol, Carbon 68, 597 (2014).
D. Janas, A.C. Vilatela, and K.K.K. Koziol, Carbon 62, 438 (2013).
K.K. Koziol, D. Janas, E. Brown, and L. Hao, Physica E 88, 104 (2017).
A. Lekawa-Raus, T. Gizewski, J. Patmore, L. Kurzepa, and K.K. Koziol, Scr. Mater. 131, 112 (2017).
M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff, Science 287, 637 (2000).
J.N. Coleman, U. Khan, W.J. Blau, and Y.K. Gun’ko, Carbon 44, 1624 (2006).
E.T. Thostenson, Z. Ren, and T.-W. Chou, Compos. Sci. Technol. 61, 1899 (2001).
A. Katunin, K. Krukiewicz, R. Turczyn, P. Sul, A. Łasica, and M. Bilewicz, Compos. Struct. 159, 773 (2017).
D. Janas, N. Czechowski, B. Krajnik, S. Mackowski, and K.K. Koziol, Appl. Phys. Lett. 102, 181104 (2013).
D. Janas, N. Czechowski, S. Mackowski, and K.K. Koziol, Appl. Phys. Lett. 104, 261107 (2014).
M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, and A.J. Hart, Science 339, 535 (2013).
H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley, Nature 318, 162 (1985).
J.C. Barnes, E.J. Dale, A. Prokofjevs, A. Narayanan, I.C. Gibbs-Hall, M. Juríček, C.L. Stern, A.A. Sarjeant, Y.Y. Botros, S.I. Stupp, and J.F. Stoddart, J. Am. Chem. Soc. 137, 2392 (2015).
R.C. Haddon, A.F. Hebard, M.J. Rosseinsky, D.W. Murphy, S.J. Duclos, K.B. Lyons, B. Miller, J.M. Rosamilia, R.M. Fleming, A.R. Kortan, S.H. Glarum, A.V. Makhija, A.J. Muller, R.H. Eick, S.M. Zahurak, R. Tycko, G. Dabbagh, and F.A. Thiel, Nature 350, 320 (1991).
T.R. Ohno, G.H. Kroll, J.H. Weaver, L.P.F. Chibante, and R.E. Smalley, Nature 355, 401 (1992).
A.P. Ramirez, Physica C 514, 166 (2015).
C.B. Winkelmann, N. Roch, W. Wernsdorfer, V. Bouchiat, and F. Balestro, Nat. Phys. 5, 876 (2009).
A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum, T.T.M. Palstra, A.P. Ramirez, and A.R. Kortan, Nature 350, 600 (1991).
Y. Zhao, Y.-H. Kim, A.C. Dillon, M.J. Heben, and S.B. Zhang, Phys. Rev. Lett. 94, 155504 (2005).
Y. Ling, G.K. Koyanagi, D. Caraiman, V. Baranov, and D.K. Bohme, Int. J. Mass Spectrom. 182, 349 (1999).
T. Benn, P. Herckes, and P. Westerhoff, Analysis and Risk of Nanomaterials in Environmental and Food Samples, ed. M. Farre and D. Barcelo (Elsevier BV, 2012), pp. 291--301
S.S. Kistler, Nature 127, 74 (1931).
R.W. Pekala, J. Mater. Sci. 24, 3221 (1989).
S. Mulik and C. Sotiriou-Leventis, in Aerogels Handbook. Advances.Sol–Gel Derived Materials and Technologies, ed. M.A. Aegerter, N. Leventis, and M.M. Koebel (New York: Springer, 2011), pp. 215–234.
C. Lin and J.A. Ritter, Carbon 35, 1271 (1997).
J. Wang, M. Glora, R. Petricevic, R. Salinger, H. Pröbtle, and J. Fricke, J. Porous Mat. 8, 159 (2001).
N. Job, R. Pirard, J. Marien, and J. Pirard, Carbon 42, 619 (2004).
M.L. Rojas-Cervantes, J. Mater. Sci. 50, 1017 (2015).
M. Wiener, G. Reichenauer, T. Scherb, and J. Fricke, J. Non-Cryst. Solids 350, 126 (2004).
S.J. Kim, S.W. Hwang, and S.H. Hyun, J. Mater. Sci. 40, 725 (2005).
M.J. van Bommel and A.B. de Haan, J. Mater. Sci. 29, 943 (1994).
C. Liang, G. Sha, and S. Guo, J. Non-Cryst. Solids 271, 167 (2000).
H. Tamon, H. Ishizaka, T. Yamamoto, and T. Suzuki, Carbon 37, 2049 (1999).
A.M. ElKhatat and S.A. Al-Muhtaseb, Adv. Mater. 23, 2887 (2011).
D.W. Krevelen, Coal Typology-Physics-Chemistry-Constitution, 3rd ed. (Amsterdam: Elsevier, 1993).
J.G. Speight, Handbook of coal analysis (New York: Wiley, 2005), pp. 1–365.
H.H. Damberger, The Science and Technology of Coal and Coal Utilization, ed. B. Cooper (New York: Springer, 1984), p. 7.
M.A. Rashid, Geochemistry of Marine Humic Compounds (New York: Springer, 1985), pp. 188–211.
B.P. Tissot and D.H. Welte, Petroleum Formation and Occurrence, a New Approach to Oil and Gas Exploration (Berlin: Springer, 1984), pp. 3–13.
J. Xu, J. Wu, and Y. He, Functions of Natural Organic Matter in Changing Environment (Dordrecht: Springer, 2013), pp. 1–268.
C.F.K. Diessel, Coal-Bearing Depositional Systems (Berlin: Springer, 1992), pp. 41–88.
M. Teichmüller and R. Teichmüller, Int. J. Earth Sci. 91, 75 (2002).
S. Tengler, Współczesne metody chemicznej przeróbki węgla (Warszawa: PWN, 1981).
D.D. Edie, Pitch and Mesophase Fibers, Carbon Fibers Filaments and Composites (Dordrecht: Kluwer Academic Publishers, 1990), pp. 43–72.
M.F. Yardim, E. Ekinci, and K.D. Bartle, Design and Control of Structure of Advanced Carbon Materials for Enhanced Performance (Dordrecht: Kluwer Academic Publishers, 2001), pp. 125–134.
M. Zander, Fuel 66, 1536 (1987).
P. Fisher, J.W. Stadelhofer, and M. Zander, Fuel 57, 345 (1978).
Z. Weishauptova, J. Medek, and Z. Vaverkova, Carbon 32, 311 (1994).
J. Machnikowski, H. Machnikowska, T. Brzozowska, and J. Zieliński, J. Anal. Appl. Pyrol. 65, 147 (2002).
P.N. Kuznetsov, L.I. Kuznetsova, F.A. Buryukin, E.N. Marakushina, and V.K. Frizorger, Solid Fuel Chem. 49, 213 (2015).
M. Perez, M. Granda, R. Santamaria, T. Morgan, and R. Menendez, Fuel 83, 1257 (2004).
A. Mianowski, S. Błażewicz, and Z. Robak, Carbon 41, 2413 (2003).
C. Panaitescu and G. Predeanu, Int. J. Coal Geol. 71, 448 (2007).
J.R. Kershaw and K.J.T. Black, Energy Fuel. 7, 420 (1993).
G. Collin and B. Bujnowska, Carbon 32, 547 (1994).
S.W. Pattinson, K. Prehn, I.A. Kinloch, D. Eder, K.K.K. Koziol, K. Schulte, and A.H. Windle, RSC Adv. 2, 2909 (2012).
M.G. Nijkamp, J.E.M.J. Raaymakers, A.J. van Dillen, and K.P. de Jong, Appl. Phys. A 72, 619 (2001).
H.M.A. Asghar, S.N. Hussain, H. Sattar, N.W. Brown, and E.P.L. Roberts, Chem. Eng. Commun. 202, 508 (2015).
A. Magasinski, G. Furdin, J.F. Mareche, G. Medjahdi, A. Albiniak, E. Broniek, and M. Jasienko-Halat, Fuel Proc. Technol. 79, 259 (2002).
X. Meng, Q. Cao, L. Jin, X. Zhang, S. Gong, and P. Li, J. Mater. Sci. 52, 760 (2017).
T.M. O’Grady and A.N. Wennerberg, Petroleum-Derived Carbons, ed. J.D. Bacha, J.W. Newman, and J.L. White (Washington: ACS Symposium Series, 1986), pp. 302–309.
I.M. Afanasov, O.N. Shornikova, I.I. Vlasov, E.V. Kogan, A.N. Seleznew, and V.V. Avdeev, Inorg. Mater. 45, 135 (2009).
M. Toyoda, K. Moriya, J. Aizawa, H. Konno, and M. Inagaki, Desalination 128, 205 (2000).
E. Miniach, A. Śliwak, A. Moyseowicz, L. Fernandez-Garcia, Z. Gonzalez, M. Granda, R. Menendez, and G. Gryglewicz, Electrochim. Acta 240, 53 (2017).
J. Zeng, J. Amici, A.H.A. Monteverde Videla, C. Francia, and S. Bodoardo, J. Solid State Electr. 21, 503 (2017).
S.S. Poulsen, P. Jackson, K. Kling, K.B. Knudsen, V. Skaug, Z.O. Kyjovska, B.L. Thomsen, P.A. Clausen, R. Atluri, T. Berthing, S. Bengtson, H. Wolff, K.A. Jensen, H. Wallin, and U. Vogel, Nanotoxicology 10, 1263 (2016).
S.Y. Lia and A.N. Kao, Appl. Catal. A Gen. 496, 79 (2015).
E. Papirer, E. Brendle, F. Ozil, and H. Balard, Carbon 37, 1265 (1999).
J. Shen and D.Y. Guan. Aerogels Handbook, in Preparation and Applications of Carbon Aerogels, ed. M. Aegerter, N. Leventis, and M. Koebel (New York: Springer, 2011), pp. 813–831.
A.M. Shariff, D.M. Beshir, M.A. Bustam, and S. Maitra, Trans. Indian Ceram. Soc. 69, 83 (2010).
B. Mathieu, S. Blacher, R. Pirard, J.P. Pirard, B. Sahouli, and F. Brouers, J. Non-Cryst. Solids 212, 250 (1997).
A. Cyganiuk, O. Gorska, A. Olejniczak, and J.P. Lukaszewicz, J. Anal. Appl. Pyrol. 98, 15 (2012).
Y.V. Tamarkina, V.A. Kucherenko, and T.G. Shendrik, Solid Fuel Chem. 49, 91 (2015).
Y. Sato, Y. Kikuchi, T. Nakamo, G. Okuno, K. Kobayakawa, T. Kawai, and A. Yokoyama, J. Power Sources 81–82, 182 (1999).
A. Romero, M.P. Lavin-Lopez, L. Sanchez-Silva, J.L. Valverde, and A. Paton-Carrero, Mater. Chem. Phys. 203, 284 (2018).
T. Ishii, Y. Kaburagi, A. Yoshida, Y. Hishiyama, H. Oka, N. Setoyama, J. Ozaki, and T. Kyotani, Carbon 125, 146 (2017).
X. Gong and S. Zhang, J. Anal. Appl. Pyrol. 127, 170 (2017).
B.K. Pradhan and N.K. Sandle, Carbon 37, 1323 (1999).
I.V. Moskalev, D.M. Kiselkov, V.N. Strenikov, V.A. Valtsifer, and K.A. Lykova, Coke Chem. 57, 98 (2014).
X. Yue, H. Wang, S. Wang, F. Zhang, and R. Zhang, J. Alloy. Compd. 505, 286 (2010).
S. Cui, R. Canet, A. Derre, M. Couzi, and P. Delhaes, Carbon 41, 797 (2003).
C. Gupta, P.H. Maheshwari, and S.R. Dhakate, Mater. Renew. Sustain. Energy 5, 2 (2016).
P. Delhaes, M. Couzi, M. Trinquecoste, J. Dentzer, H. Hamidou, and C. Vix-Guterl, Carbon 44, 3005 (2006).
G.L. Baker, A. Gupta, M.L. Clark, B.R. Valenzuela, L.M. Staska, S.J. Harbo, J.T. Pierce, and J.A. Dill, Toxicol. Sci. 10, 122 (2008).
F.J. Maldonado-Hodar, C. Moreno-Castilla, J. Rivera-Utrilla, Y. Hanzawa, and Y. Yamada, Langmuir 16, 4367 (2000).
Z.M. Markovic, B.M. Babic, M.D. Dramicanin, I.D. Holclajtner Antunovic, V.B. Pavlovic, D.B. Perusko, and B.M. Todorovic Markovic, Synth. Met. 162, 743 (2012).
S.J. Hill, W.J. Grigsby, and P.W. Hall, Biomass Bioenergy 56, 92 (2013).
F. Min, M. Zhang, Y. Zhang, Y. Cao, and W.P. Pan, J. Anal. Appl. Pyrol. 92, 250 (2011).
H. Takagi, K. Maruyama, N. Yoshizawa, Y. Yamada, and Y. Sato, Fuel 83, 2427 (2004).
Y. Li, Y.S. Hu, H. Li, L. Chen, and X. Huang, J. Mater. Chem. A 4, 96 (2016).
Acknowledgments
The authors would particularly like to thank Dr. Krzysztof Koziol from Department of Materials Science and Metallurgy, Cambridge University, UK for giving opportunity to synthesize CNTs. Recognition is also due to MSc Elżbieta Szatkowska for her laboratory help in carbon aerogels synthesis. Authors would like to thank Institute of Non-Ferrous Metals for the ability to prepare this paper with particular thanks due to Andrzej Chmielarz and Katarzyna Leszczyńska-Sejda. Authors deeply appreciate contribution of MSc Katarzyna Bilewska in evaluation of x-ray powder diffraction results. Authors would also like to thank National Science Center, Poland (under the Polonez program, Grant Agreement UMO-2015/19/P/ST5/03799) and the European Union’s Horizon 2020 research and innovation programme (Marie Skłodowska-Curie Grant Agreement 665778). Authors would also like to acknowledge Foundation for Polish Science for START scholarship (START 025.2017), the Ministry for Science and Higher Education for the scholarship for outstanding young scientists (0388/E-367/STYP/12/2017) and the Rector of the Silesian University of Technology in Gliwice for the Pro-Quality Grant (04/020/RGJ18/0057).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Ciszewski, M., Koszorek, A., Radko, T. et al. Review of the Selected Carbon-Based Materials for Symmetric Supercapacitor Application. J. Electron. Mater. 48, 717–744 (2019). https://doi.org/10.1007/s11664-018-6811-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-018-6811-7
Keywords
- Carbon
- carbon gel
- coal tar pitch
- carbonized materials
- energy storage
- supercapacitors