Review of the Selected Carbon-Based Materials for Symmetric Supercapacitor Application

Abstract

Carbon materials are among the most commonly used components of supercapacitor electrodes. Particularly, active carbons are recognized as cheap, available, and easily tailored materials. However, the carbon family, i.e. carbon products and carbon precursors, consists of many members. In this manuscript some of these materials, including laboratory scale-produced carbon gels, carbon nanotubes and carbonized materials, as well as industrial scale-produced graphites, pitches, coke and coal, were compared. Discussion was preceded by a short history of supercapacitors and review of each type of tested material, from early beginning to state-of-the-art. Morphology and structure of the materials were analyzed (specific surface area, pore volume and interlayer spacing determination), to evaluate their applicability in energy storage. Thermal analysis was used to determine the stability and purity. Finally, electrochemical evaluation using cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy was performed. Outcomes of each analytical technique were summarized in different sections.

References

  1. 1.

    S.E. Chang, T.L. McDaniels, J. Mikawoz, and K. Peterson, Nat. Hazards 41, 337 (2007).

    Google Scholar 

  2. 2.

    P. Hines, J. Apt, and S. Talukdar, Energy Policy 37, 5249 (2009).

    Google Scholar 

  3. 3.

    P. Kurzweil, A. Hildebrand, and M. Weiß, ChemElectroChem 2, 150 (2015).

    Google Scholar 

  4. 4.

    S. Ducharme, ACS Nano 3, 2447 (2009).

    Google Scholar 

  5. 5.

    P. Sharma and T.S. Bhatti, Energy Convers. Manag. 51, 2901 (2010).

    Google Scholar 

  6. 6.

    H.I. Becker, Patent US2800616A, by General Electric Company (1957)

  7. 7.

    R.A. Rightmire, Patent US3288641A, by Standard Oil Co (1962)

  8. 8.

    J.W. Sprague, Patent US3615829A, by Standard Oil Co (1965)

  9. 9.

    M. Endo, T. Takeda, Y.J. Kim, K. Koshiba, and K. Ishii, Carbon Lett. 1, 117 (2001).

    Google Scholar 

  10. 10.

    M. Hosokawa, K. Sanada, and T. Kawamura, Patent US4313084A, by NEC Corp (1978)

  11. 11.

    V. Augustyn, P. Simon, and B. Dunn, Energ. Environ. Sci. 7, 1597 (2014).

    Google Scholar 

  12. 12.

    N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, and J. Thomas, Adv. Mater. 29, 1605336 (2017).

    Google Scholar 

  13. 13.

    H.L.F. von Helmholtz, Ann. Phys. Berl. 243, 337 (1879).

    Google Scholar 

  14. 14.

    F. Beguin, V. Presser, A. Balducci, and E. Frackowiak, Adv. Mater. 26, 2219 (2014).

    Google Scholar 

  15. 15.

    M. Gouy, J. Phys. Théor. Appl. 9, 457 (1910).

    Google Scholar 

  16. 16.

    D.L. Chapman, Philos. Mag. 25, 457 (1913).

    Google Scholar 

  17. 17.

    O. Stern, Z. Elektrochem. Angew. Phys. Chem. 30, 508 (1924).

    Google Scholar 

  18. 18.

    A. Gonzalez, E. Goikolea, J.A. Barrena, and R. Mysyk, Renew. Sust. Energ. Rev. 58, 1189 (2016).

    Google Scholar 

  19. 19.

    B. Kastening and S. Spinzig, J. Electroanal. Chem. 214, 295 (1986).

    Google Scholar 

  20. 20.

    A.C. Forse, C. Merlet, J.M. Griffin, and C.P. Grey, J. Am. Chem. Soc. 138, 5731 (2016).

    Google Scholar 

  21. 21.

    F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, and W. Huang, Chem. Soc. Rev. 46, 6816 (2017).

    Google Scholar 

  22. 22.

    V. Musolino, A. Pievatolo, and E. Tironi, Energy 36, 6697 (2011).

    Google Scholar 

  23. 23.

    M. Winter and R.J. Brodd, Chem. Rev. 104, 4245 (2004).

    Google Scholar 

  24. 24.

    Y. Hori, IEEJ Trans. Electr. Electr. 4, 231 (2009).

    Google Scholar 

  25. 25.

    B.K. Deka, A. Hazarika, J. Kim, Y.B. Park, and H.W. Park, Int. J. Energy Res. 41, 1397 (2017).

    Google Scholar 

  26. 26.

    E. Karden, S. Ploumen, B. Fricke, T. Miller, and K. Snyder, J. Power Sources 168, 2 (2007).

    Google Scholar 

  27. 27.

    V.A. Shah, J.A. Joshi, R. Maheshwari, and R. Roy, in Proceedings of the 15th National Power System Conference, IIT Bombay (2008), p. 142

  28. 28.

    V. Ruiz, C. Blanco, E. Raymundo-Pinero, V. Khomenko, F. Beguin, and R. Santamaria, Electrochim. Acta 52, 4969 (2007).

    Google Scholar 

  29. 29.

    W. Lu, L. Qu, K. Henry, and L. Dai, J. Power Sources 189, 1270 (2009).

    Google Scholar 

  30. 30.

    R. Lin, P.L. Taberna, S. Fantini, V. Presser, C.R. Perez, F. Malbosc, N.L. Rupesinghe, K.B.K. Teo, Y. Gogotsi, and P. Simon, J. Phys. Chem. Lett. 2, 2396 (2011).

    Google Scholar 

  31. 31.

    R.G. Roggers and K.R. Seddon, Science 302, 792 (2003).

    Google Scholar 

  32. 32.

    C. Portet, M.A. Lillo-Rodenas, A. Linares-Solano, and Y. Gogotsi, Phys. Chem. Chem. Phys. 11, 4943 (2009).

    Google Scholar 

  33. 33.

    L. Eliad, E. Pollak, N. Levy, G. Salitra, A. Soffer, and D. Aurbach, Appl. Phys. A 82, 607 (2006).

    Google Scholar 

  34. 34.

    Y.J. Kim, Y. Horie, S. Ozaki, Y. Matsuzawa, H. Suezaki, C. Kim, N. Miyashita, and M. Endo, Carbon 42, 1491 (2004).

    Google Scholar 

  35. 35.

    V.M. Gun’ko, V.V. Turov, O.P. Kozynchenko, V.G. Nikolaev, S.R. Tennison, S.T. Meikle, E.A. Snezhkova, A.S. Sidorenko, F. Ehrburger-Dolle, I. Morfin, D.O. Klymchuk, and S.V. Mikhalovsky, Adsorption 17, 453 (2011).

    Google Scholar 

  36. 36.

    T. Zhang, J. Lang, L. Liu, L. Liu, H. Li, Y. Gu, X. Yan, and X. Ding, Chin. Chem. Lett. 28, 2212 (2017).

    Google Scholar 

  37. 37.

    L. Jiang, J. Wang, X. Mao, X. Xu, B. Zhang, J. Yang, Y. Wang, J. Zhu, and S. Hou, Carbon 111, 207 (2017).

    Google Scholar 

  38. 38.

    S. Rodrigues, M. Marques, I. Suarez-RuizI, D. Camean, and B.Kwiecinska Flores, Int. J. Coal Geol. 111, 67 (2013).

    Google Scholar 

  39. 39.

    B. Kwiecinska and H.I. Petersen, Int. J. Coal Geol. 57, 99 (2004).

    Google Scholar 

  40. 40.

    P. Beghein, G. Berlioux, B. du Mesnildot, F. Hiltmann, and M. Melin, Nucl. Eng. Des. 251, 146 (2012).

    Google Scholar 

  41. 41.

    M. Wissler, J. Power Sources 156, 142 (2006).

    Google Scholar 

  42. 42.

    W.M. Goldberger, P.R. Carney, R.F. Markel, and F.J. Deutschle, Granular Grahitic Carbon. Petroleum Derived Carbons (Washington: American Chemical Society, 1986), pp. 200–214.

    Google Scholar 

  43. 43.

    F.J. Luque, J.M. Huizenga, E. Crespo-Feo, H. Wada, L. Ortega, and J.F. Barrenechea, Miner. Depos. 49, 261 (2014).

    Google Scholar 

  44. 44.

    N. Murdie and I.A.S. Edwards, J. Mater. Sci. 20, 171 (1985).

    Google Scholar 

  45. 45.

    O. Khvostikova, H. Hermann, H. Wendrock, T. Gemming, J. Thomas, and H. Ehrenberg, J. Mater. Sci. 46, 2422 (2011).

    Google Scholar 

  46. 46.

    P.L. Zaleski, D.J. Derwin, and R.J. Girkant, Patent US6287694B1, by Superior Graphite Co (1998)

  47. 47.

    J.W. Patrick and S. Hanson, Pore Structure of Graphite, Coke and Composites, in Handbook of Porous Solids, ed. F. Schuth, K.S.W. Sing, and J. Weitkamp (Weinheim: Wiley-VCH, 2002), pp. 1900–1922.

    Google Scholar 

  48. 48.

    L. Edwards, JOM 67, 308 (2015).

    Google Scholar 

  49. 49.

    E.I. Andreikov, O.V. Krasnikova, and I.S. Amosova, Coke Chem. 53, 311 (2010).

    Google Scholar 

  50. 50.

    S. Patel, Rev. Environ. Sci. Biotechnol. 11, 365 (2012).

    Google Scholar 

  51. 51.

    M.N. Alaya, B.S. Girgis, and W.E. Mourad, J. Porous Mat. 7, 509 (2000).

    Google Scholar 

  52. 52.

    N. Arena, J. Lee, and R. Clift, J. Clean. Prod. 125, 68 (2016).

    Google Scholar 

  53. 53.

    J. Mort, R. Ziolo, M. Machonkin, D.R. Huffman, and M.I. Fergusson, Chem. Phys. Lett. 186, 284 (1991).

    Google Scholar 

  54. 54.

    C. Wen, J. Li, K. Kitazawa, T. Aida, I. Honma, H. Komiyama, and K. Yamada, Appl. Phys. Lett. 61, 2162 (1992).

    Google Scholar 

  55. 55.

    W. Yang, K.R. Ratinac, S.P. Ringer, P. Thordarson, J.J. Gooding, and F. Braet, Angew. Chem. Ger. Edit. 49, 2114 (2010).

    Google Scholar 

  56. 56.

    W. Ren and H.M. Cheng, Nat. Nanotechnol. 9, 726 (2014).

    Google Scholar 

  57. 57.

    M. Wilk, A. Magdziarz, I. Kalemba, and P. Gara, Renew. Energy 85, 507 (2016).

    Google Scholar 

  58. 58.

    A.C. Pierre, History of aerogels, in Advances in Sol–Gel Derived Materials and Technologies, Aerogels Handbook, ed. M.A. Aegerter, N. Leventis, and M.M. Koebel (New York: Springer, 2011), pp. 3–18.

    Google Scholar 

  59. 59.

    M. Mastragostino, C. Arbizzani, and F. Soavi, J. Power Sources 97–98, 812 (2001).

    Google Scholar 

  60. 60.

    M. Yassine and D. Fabris, Energies 10, 1340 (2017).

    Google Scholar 

  61. 61.

    X.F. Wang, Z. Chang, M. Li, and Y. Wu, Nanocarbon-based materials for asymmetric supercapacitors, in Nanocarbons for Advanced Energy Storage, ed. X. Feng (New York: Wiley, 2015), pp. 379–415.

    Google Scholar 

  62. 62.

    H. Jankowska, A. Świątkowski, and J. Choma, Active Carbon (Chichester: Ellis Horwood Ltd., 1991), p. 280.

    Google Scholar 

  63. 63.

    R.Ch. Bansal and M. Goyal, Activated Carbon Adsorption (New York: CRC Press, 2005), pp. 1–520.

    Google Scholar 

  64. 64.

    H. Marsh and F.R. Reinoso, Activated Carbon, 1st ed. (Oxford: Elsevier Science, 2006), pp. 1–554.

    Google Scholar 

  65. 65.

    H. Teng, T.S. Yih, and L.Y. Hsu, Carbon 36, 1387 (1998).

    Google Scholar 

  66. 66.

    Y.V. Pokonova, Carbon 34, 411 (1996).

    Google Scholar 

  67. 67.

    Y. Uraki, Y. Tamai, M. Ogawa, S. Gaman, and S. Tokura, BioResources 4, 205 (2009).

    Google Scholar 

  68. 68.

    M.S. Solum, R.J. Pugmire, M. Jagtoyen, and F. Derbyshire, Carbon 33, 1247 (1995).

    Google Scholar 

  69. 69.

    E. Schroöder, K. Thomauske, C. Weber, A. Hornung, and V. Tumiatti, J. Anal. Appl. Pyrol. 79, 106 (2007).

    Google Scholar 

  70. 70.

    N.M. Nor, L.L. Chung, L.K. Teong, and A.R. Mohamed, J. Environ. Chem. Eng. 1, 658 (2013).

    Google Scholar 

  71. 71.

    V. Dodevski, B. Janković, M. Stojmenović, S. Krstić, J. Popović, M.C. Pagnacco, M. Popović, and S. Pašalić, Colloids Surf. A 522, 83 (2017).

    Google Scholar 

  72. 72.

    W. Tang, Y. Zhang, Y. Zhong, T. Shen, X. Wang, X. Xia, and J. Tu, Mater. Res. Bull. 88, 234 (2017).

    Google Scholar 

  73. 73.

    C. Rodriguez Correa, T. Otto, and A. Kruse, Biomass Bioenergy 97, 53 (2017).

    Google Scholar 

  74. 74.

    P. González-García, Renew. Sustain. Energy Rev. 82, 1393 (2018).

    Google Scholar 

  75. 75.

    A.J. Romero-Anaya, M. Ouzzine, M.A. Lillo-Ródenas, and A. Linares-Solano, Carbon 68, 296 (2014).

    Google Scholar 

  76. 76.

    P. Costa Vilella, J. Alves Lira, D.C.S. Azevedo, M. Bastos-Neto, and R. Stefanuttia, Ind. Crop. Prod. 109, 134 (2017).

    Google Scholar 

  77. 77.

    X. Zhu, Y. Gao, Q. Yue, Y. Kan, W. Kong, and B. Gao, Ecotoxcol. Environ. Saf. 145, 289 (2017).

    Google Scholar 

  78. 78.

    J. Wang, T.L. Liu, Q.X. Huang, Z.Y. Ma, Y. Chi, and J.H. Yan, Fuel Process. Technol. 162, 13 (2017).

    Google Scholar 

  79. 79.

    A. Jain, R. Balasubramanian, and M.P. Srinivasan, Chem. Eng. J. 283, 789 (2016).

    Google Scholar 

  80. 80.

    H. Laksaci, A. Khelifi, M. Trari, and A. Addoun, J. Clean. Prod. 147, 254 (2017).

    Google Scholar 

  81. 81.

    A.B. Fadhil, A.I. Ahmed, and H.A. Salih, Fuel 187, 435 (2017).

    Google Scholar 

  82. 82.

    S. Uçar, M. Erdem, T. Tay, and S. Karagöz, Appl. Surf. Sci. 255, 8890 (2009).

    Google Scholar 

  83. 83.

    H. Sayğılı and F. Güzel, J. Clean. Prod. 113, 995 (2016).

    Google Scholar 

  84. 84.

    J.H. Tay, X.G. Chen, S. Jeyaseelan, and N. Graham, Chemosphere 44, 45 (2001).

    Google Scholar 

  85. 85.

    X. Chen, S. Jeyaseelan, and N. Graham, Waste Manag. 22, 755 (2002).

    Google Scholar 

  86. 86.

    G. Xu, X. Yang, and L. Spinosa, J. Environ. Manag. 151, 221 (2015).

    Google Scholar 

  87. 87.

    A. Gupta and A. Garg, Clean Technol. Environ. 17, 1619 (2015).

    Google Scholar 

  88. 88.

    C. Wu, M. Song, B. Jin, Y. Wu, and Y. Huang, J. Environ. Sci. 25, 405 (2013).

    Google Scholar 

  89. 89.

    E.L.K. Mui, W.H. Cheung, M. Valix, and G. McKay, Microporous Mesoporous Mater. 130, 287 (2010).

    Google Scholar 

  90. 90.

    P. Hadi, K.Y. Yeung, J. Guo, H. Wang, and G. McKay, J. Environ. Manag. 170, 1 (2016).

    Google Scholar 

  91. 91.

    A.S. Al-Rahbi and P.T. Williams, Waste Manag. 49, 188 (2016).

    Google Scholar 

  92. 92.

    W.K. Lafi, Biomass Bioenergy 20, 57 (2001).

    Google Scholar 

  93. 93.

    G. San Miguel, G.D. Fowler, and C.J. Sollars, Carbon 41, 1009 (2003).

    Google Scholar 

  94. 94.

    N.A. Rashidi and S. Yusup, Chem. Eng. J. 314, 277 (2017).

    Google Scholar 

  95. 95.

    X.F. Tan, S.B. Liu, Y.G. Liu, Y.L. Gu, G.M. Zeng, X.J. Hu, X. Wang, S.H. Liu, and L.H. Jiang, Bioresour. Technol. 227, 359 (2017).

    Google Scholar 

  96. 96.

    F. Rodriguez-Reinoso, M. Molina-Sabio, and M.T. Gonzalez, Carbon 33, 15 (1995).

    Google Scholar 

  97. 97.

    M. Molina-Sabio, F. Rodriguez-Reinoso, F. Caturla, and M.J. Sellés, Carbon 34, 457 (1996).

    Google Scholar 

  98. 98.

    D.H. Everett, Pure Appl. Chem. 31, 577 (1972).

    Google Scholar 

  99. 99.

    Q. Wang, X. Zhu, Y. Liu, Y. Fang, X. Zhou, and J. Bao, Carbon 127, 658 (2018).

    Google Scholar 

  100. 100.

    M.A. Adekunle and N.A. Farid, Renew. Sustain. Energy Rev. 52, 1282 (2015).

    Google Scholar 

  101. 101.

    A. Volperts, G. Dobele, A. Zhurinsh, D. Vervikishko, E. Shkolnikov, and J. Ozolinsh, New Carbon Mater. 32, 319 (2017).

    Google Scholar 

  102. 102.

    N. Guo, M. Li, X. Sun, F. Wang, and R. Yang, Mater. Chem. Phys. 201, 399 (2017).

    Google Scholar 

  103. 103.

    W. Li, Y. Ding, W. Zhang, Y. Shu, L. Zhang, F. Yang, and Y. Shen, J. Taiwan Inst. Chem. Eng. 64, 166 (2016).

    Google Scholar 

  104. 104.

    L.D. Landau, Phys. Z. Sowjetunion 11, 26 (1937).

    Google Scholar 

  105. 105.

    R. Peierls, Ann. Inst. Henri Poincaré 5, 177 (1935).

    Google Scholar 

  106. 106.

    P.R. Wallace, Phys. Rev. 71, 622 (1947).

    Google Scholar 

  107. 107.

    H.P. Boehm, A. Clauss, G.O. Fischer, and U. Hofamnn, Z. Naturforsch. B 17b, 150 (1962).

    Google Scholar 

  108. 108.

    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Google Scholar 

  109. 109.

    U. Khan, A. O’Neill, M. Lotya, S. De, and J.N. Coleman, Small 6, 864 (2010).

    Google Scholar 

  110. 110.

    B.C. Brodie, On the atomic weight of graphite. Philos. Trans. R. Soc. 149, 249 (1859).

    Google Scholar 

  111. 111.

    L. Staudenmaier, Ber. Dtsch. Chem. Ges. 31, 1481 (1898).

    Google Scholar 

  112. 112.

    W.S. Hummers Jr and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

    Google Scholar 

  113. 113.

    H. He, T. Riedl, A. Lerf, and J. Klinowski, J. Phys. Chem. 100, 19954 (1996).

    Google Scholar 

  114. 114.

    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, and R.S. Ruoff, Carbon 45, 1558 (2007).

    Google Scholar 

  115. 115.

    Y. Si and E.T. Samulski, Nano Lett. 8, 1679 (2008).

    Google Scholar 

  116. 116.

    X. Mei and J. Ouyang, Carbon 49, 5389 (2011).

    Google Scholar 

  117. 117.

    M.J. Fernández-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J.M.D. Tascón, J. Phys. Chem. C 114, 6426 (2010).

    Google Scholar 

  118. 118.

    S. Pei and H.-M. Cheng, Carbon 50, 3210 (2012).

    Google Scholar 

  119. 119.

    L.J. Cote, R. Cruz-Silva, and J. Huang, J. Am. Chem. Soc. 131, 11027 (2009).

    Google Scholar 

  120. 120.

    P.V. Kamat, Chem. Rev. 93, 267 (1993).

    Google Scholar 

  121. 121.

    C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, and W.A. de Heer, J. Phys. Chem. B 108, 19912 (2004).

    Google Scholar 

  122. 122.

    W. Strupiński, K. Grodecki, A. Wysmolek, R. Stępniewski, T. Szkopek, P.E. Gaskell, A. Gruneis, D. Haberer, R. Bożek, J. Krupka, and J.M. Baranowski, Nano Lett. 11, 1786 (2011).

    Google Scholar 

  123. 123.

    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B.H. Hong, Nature 457, 706 (2009).

    Google Scholar 

  124. 124.

    M. Pumera, Chem. Rec. 9, 211 (2009).

    Google Scholar 

  125. 125.

    G. Liang, N. Neophytou, M.S. Lundstrom, and D.E. Nikonov, J. Appl. Phys. 102, 054307-1 (2007).

    Google Scholar 

  126. 126.

    X. Wang, L. Zhi, and K. Müllen, Nano Lett. 8, 323 (2008).

    Google Scholar 

  127. 127.

    D.S. Su, N. Maksimova, J.J. Delgado, N. Keller, G. Mestl, M.J. Ledoux, and R. Schlögl, Catal. Today 102–103, 110 (2005).

    Google Scholar 

  128. 128.

    L.V. Radushkevich and V.M. Lukyanovich, Z. Fiz. Khim. 26, 88 (1952).

    Google Scholar 

  129. 129.

    S. Iijima, Nature 354, 56 (1991).

    Google Scholar 

  130. 130.

    S. Hong and S. Myung, Nat. Nanotechnol. 2, 207 (2007).

    Google Scholar 

  131. 131.

    G.J. Brady, A.J. Way, N.S. Safron, H.T. Evensen, P. Gopalan, and M.S. Arnold, Sci. Adv. 2, 1 (2016).

    Google Scholar 

  132. 132.

    E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, Nano Lett. 6, 96 (2006).

    Google Scholar 

  133. 133.

    D. Janas, A. Cabrero-Vilatela, J. Bulmer, L. Kurzepa, and K.K. Koziol, Carbon 64, 305 (2013).

    Google Scholar 

  134. 134.

    D. Janas, K.Z. Milowska, P.D. Bristowe, and K.K.K. Koziol, Nanoscale 9, 3212 (2017).

    Google Scholar 

  135. 135.

    A. Lekawa-Raus, L. Kurzepa, X. Peng, and K. Koziol, Carbon 68, 597 (2014).

    Google Scholar 

  136. 136.

    D. Janas, A.C. Vilatela, and K.K.K. Koziol, Carbon 62, 438 (2013).

    Google Scholar 

  137. 137.

    K.K. Koziol, D. Janas, E. Brown, and L. Hao, Physica E 88, 104 (2017).

    Google Scholar 

  138. 138.

    A. Lekawa-Raus, T. Gizewski, J. Patmore, L. Kurzepa, and K.K. Koziol, Scr. Mater. 131, 112 (2017).

    Google Scholar 

  139. 139.

    M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff, Science 287, 637 (2000).

    Google Scholar 

  140. 140.

    J.N. Coleman, U. Khan, W.J. Blau, and Y.K. Gun’ko, Carbon 44, 1624 (2006).

    Google Scholar 

  141. 141.

    E.T. Thostenson, Z. Ren, and T.-W. Chou, Compos. Sci. Technol. 61, 1899 (2001).

    Google Scholar 

  142. 142.

    A. Katunin, K. Krukiewicz, R. Turczyn, P. Sul, A. Łasica, and M. Bilewicz, Compos. Struct. 159, 773 (2017).

    Google Scholar 

  143. 143.

    D. Janas, N. Czechowski, B. Krajnik, S. Mackowski, and K.K. Koziol, Appl. Phys. Lett. 102, 181104 (2013).

    Google Scholar 

  144. 144.

    D. Janas, N. Czechowski, S. Mackowski, and K.K. Koziol, Appl. Phys. Lett. 104, 261107 (2014).

    Google Scholar 

  145. 145.

    M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, and A.J. Hart, Science 339, 535 (2013).

    Google Scholar 

  146. 146.

    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley, Nature 318, 162 (1985).

    Google Scholar 

  147. 147.

    J.C. Barnes, E.J. Dale, A. Prokofjevs, A. Narayanan, I.C. Gibbs-Hall, M. Juríček, C.L. Stern, A.A. Sarjeant, Y.Y. Botros, S.I. Stupp, and J.F. Stoddart, J. Am. Chem. Soc. 137, 2392 (2015).

    Google Scholar 

  148. 148.

    R.C. Haddon, A.F. Hebard, M.J. Rosseinsky, D.W. Murphy, S.J. Duclos, K.B. Lyons, B. Miller, J.M. Rosamilia, R.M. Fleming, A.R. Kortan, S.H. Glarum, A.V. Makhija, A.J. Muller, R.H. Eick, S.M. Zahurak, R. Tycko, G. Dabbagh, and F.A. Thiel, Nature 350, 320 (1991).

    Google Scholar 

  149. 149.

    T.R. Ohno, G.H. Kroll, J.H. Weaver, L.P.F. Chibante, and R.E. Smalley, Nature 355, 401 (1992).

    Google Scholar 

  150. 150.

    A.P. Ramirez, Physica C 514, 166 (2015).

    Google Scholar 

  151. 151.

    C.B. Winkelmann, N. Roch, W. Wernsdorfer, V. Bouchiat, and F. Balestro, Nat. Phys. 5, 876 (2009).

    Google Scholar 

  152. 152.

    A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum, T.T.M. Palstra, A.P. Ramirez, and A.R. Kortan, Nature 350, 600 (1991).

    Google Scholar 

  153. 153.

    Y. Zhao, Y.-H. Kim, A.C. Dillon, M.J. Heben, and S.B. Zhang, Phys. Rev. Lett. 94, 155504 (2005).

    Google Scholar 

  154. 154.

    Y. Ling, G.K. Koyanagi, D. Caraiman, V. Baranov, and D.K. Bohme, Int. J. Mass Spectrom. 182, 349 (1999).

    Google Scholar 

  155. 155.

    T. Benn, P. Herckes, and P. Westerhoff, Analysis and Risk of Nanomaterials in Environmental and Food Samples, ed. M. Farre and D. Barcelo (Elsevier BV, 2012), pp. 291--301

  156. 156.

    S.S. Kistler, Nature 127, 74 (1931).

    Google Scholar 

  157. 157.

    R.W. Pekala, J. Mater. Sci. 24, 3221 (1989).

    Google Scholar 

  158. 158.

    S. Mulik and C. Sotiriou-Leventis, in Aerogels Handbook. Advances.Sol–Gel Derived Materials and Technologies, ed. M.A. Aegerter, N. Leventis, and M.M. Koebel (New York: Springer, 2011), pp. 215–234.

    Google Scholar 

  159. 159.

    C. Lin and J.A. Ritter, Carbon 35, 1271 (1997).

    Google Scholar 

  160. 160.

    J. Wang, M. Glora, R. Petricevic, R. Salinger, H. Pröbtle, and J. Fricke, J. Porous Mat. 8, 159 (2001).

    Google Scholar 

  161. 161.

    N. Job, R. Pirard, J. Marien, and J. Pirard, Carbon 42, 619 (2004).

    Google Scholar 

  162. 162.

    M.L. Rojas-Cervantes, J. Mater. Sci. 50, 1017 (2015).

    Google Scholar 

  163. 163.

    M. Wiener, G. Reichenauer, T. Scherb, and J. Fricke, J. Non-Cryst. Solids 350, 126 (2004).

    Google Scholar 

  164. 164.

    S.J. Kim, S.W. Hwang, and S.H. Hyun, J. Mater. Sci. 40, 725 (2005).

    Google Scholar 

  165. 165.

    M.J. van Bommel and A.B. de Haan, J. Mater. Sci. 29, 943 (1994).

    Google Scholar 

  166. 166.

    C. Liang, G. Sha, and S. Guo, J. Non-Cryst. Solids 271, 167 (2000).

    Google Scholar 

  167. 167.

    H. Tamon, H. Ishizaka, T. Yamamoto, and T. Suzuki, Carbon 37, 2049 (1999).

    Google Scholar 

  168. 168.

    A.M. ElKhatat and S.A. Al-Muhtaseb, Adv. Mater. 23, 2887 (2011).

    Google Scholar 

  169. 169.

    D.W. Krevelen, Coal Typology-Physics-Chemistry-Constitution, 3rd ed. (Amsterdam: Elsevier, 1993).

    Google Scholar 

  170. 170.

    J.G. Speight, Handbook of coal analysis (New York: Wiley, 2005), pp. 1–365.

    Google Scholar 

  171. 171.

    H.H. Damberger, The Science and Technology of Coal and Coal Utilization, ed. B. Cooper (New York: Springer, 1984), p. 7.

    Google Scholar 

  172. 172.

    M.A. Rashid, Geochemistry of Marine Humic Compounds (New York: Springer, 1985), pp. 188–211.

    Google Scholar 

  173. 173.

    B.P. Tissot and D.H. Welte, Petroleum Formation and Occurrence, a New Approach to Oil and Gas Exploration (Berlin: Springer, 1984), pp. 3–13.

    Google Scholar 

  174. 174.

    J. Xu, J. Wu, and Y. He, Functions of Natural Organic Matter in Changing Environment (Dordrecht: Springer, 2013), pp. 1–268.

    Google Scholar 

  175. 175.

    C.F.K. Diessel, Coal-Bearing Depositional Systems (Berlin: Springer, 1992), pp. 41–88.

    Google Scholar 

  176. 176.

    M. Teichmüller and R. Teichmüller, Int. J. Earth Sci. 91, 75 (2002).

    Google Scholar 

  177. 177.

    S. Tengler, Współczesne metody chemicznej przeróbki węgla (Warszawa: PWN, 1981).

    Google Scholar 

  178. 178.

    D.D. Edie, Pitch and Mesophase Fibers, Carbon Fibers Filaments and Composites (Dordrecht: Kluwer Academic Publishers, 1990), pp. 43–72.

    Google Scholar 

  179. 179.

    M.F. Yardim, E. Ekinci, and K.D. Bartle, Design and Control of Structure of Advanced Carbon Materials for Enhanced Performance (Dordrecht: Kluwer Academic Publishers, 2001), pp. 125–134.

    Google Scholar 

  180. 180.

    M. Zander, Fuel 66, 1536 (1987).

    Google Scholar 

  181. 181.

    P. Fisher, J.W. Stadelhofer, and M. Zander, Fuel 57, 345 (1978).

    Google Scholar 

  182. 182.

    Z. Weishauptova, J. Medek, and Z. Vaverkova, Carbon 32, 311 (1994).

    Google Scholar 

  183. 183.

    J. Machnikowski, H. Machnikowska, T. Brzozowska, and J. Zieliński, J. Anal. Appl. Pyrol. 65, 147 (2002).

    Google Scholar 

  184. 184.

    P.N. Kuznetsov, L.I. Kuznetsova, F.A. Buryukin, E.N. Marakushina, and V.K. Frizorger, Solid Fuel Chem. 49, 213 (2015).

    Google Scholar 

  185. 185.

    M. Perez, M. Granda, R. Santamaria, T. Morgan, and R. Menendez, Fuel 83, 1257 (2004).

    Google Scholar 

  186. 186.

    A. Mianowski, S. Błażewicz, and Z. Robak, Carbon 41, 2413 (2003).

    Google Scholar 

  187. 187.

    C. Panaitescu and G. Predeanu, Int. J. Coal Geol. 71, 448 (2007).

    Google Scholar 

  188. 188.

    J.R. Kershaw and K.J.T. Black, Energy Fuel. 7, 420 (1993).

    Google Scholar 

  189. 189.

    G. Collin and B. Bujnowska, Carbon 32, 547 (1994).

    Google Scholar 

  190. 190.

    S.W. Pattinson, K. Prehn, I.A. Kinloch, D. Eder, K.K.K. Koziol, K. Schulte, and A.H. Windle, RSC Adv. 2, 2909 (2012).

    Google Scholar 

  191. 191.

    M.G. Nijkamp, J.E.M.J. Raaymakers, A.J. van Dillen, and K.P. de Jong, Appl. Phys. A 72, 619 (2001).

    Google Scholar 

  192. 192.

    H.M.A. Asghar, S.N. Hussain, H. Sattar, N.W. Brown, and E.P.L. Roberts, Chem. Eng. Commun. 202, 508 (2015).

    Google Scholar 

  193. 193.

    A. Magasinski, G. Furdin, J.F. Mareche, G. Medjahdi, A. Albiniak, E. Broniek, and M. Jasienko-Halat, Fuel Proc. Technol. 79, 259 (2002).

    Google Scholar 

  194. 194.

    X. Meng, Q. Cao, L. Jin, X. Zhang, S. Gong, and P. Li, J. Mater. Sci. 52, 760 (2017).

    Google Scholar 

  195. 195.

    T.M. O’Grady and A.N. Wennerberg, Petroleum-Derived Carbons, ed. J.D. Bacha, J.W. Newman, and J.L. White (Washington: ACS Symposium Series, 1986), pp. 302–309.

    Google Scholar 

  196. 196.

    I.M. Afanasov, O.N. Shornikova, I.I. Vlasov, E.V. Kogan, A.N. Seleznew, and V.V. Avdeev, Inorg. Mater. 45, 135 (2009).

    Google Scholar 

  197. 197.

    M. Toyoda, K. Moriya, J. Aizawa, H. Konno, and M. Inagaki, Desalination 128, 205 (2000).

    Google Scholar 

  198. 198.

    E. Miniach, A. Śliwak, A. Moyseowicz, L. Fernandez-Garcia, Z. Gonzalez, M. Granda, R. Menendez, and G. Gryglewicz, Electrochim. Acta 240, 53 (2017).

    Google Scholar 

  199. 199.

    J. Zeng, J. Amici, A.H.A. Monteverde Videla, C. Francia, and S. Bodoardo, J. Solid State Electr. 21, 503 (2017).

    Google Scholar 

  200. 200.

    S.S. Poulsen, P. Jackson, K. Kling, K.B. Knudsen, V. Skaug, Z.O. Kyjovska, B.L. Thomsen, P.A. Clausen, R. Atluri, T. Berthing, S. Bengtson, H. Wolff, K.A. Jensen, H. Wallin, and U. Vogel, Nanotoxicology 10, 1263 (2016).

    Google Scholar 

  201. 201.

    S.Y. Lia and A.N. Kao, Appl. Catal. A Gen. 496, 79 (2015).

    Google Scholar 

  202. 202.

    E. Papirer, E. Brendle, F. Ozil, and H. Balard, Carbon 37, 1265 (1999).

    Google Scholar 

  203. 203.

    J. Shen and D.Y. Guan. Aerogels Handbook, in Preparation and Applications of Carbon Aerogels, ed. M. Aegerter, N. Leventis, and M. Koebel (New York: Springer, 2011), pp. 813–831.

    Google Scholar 

  204. 204.

    A.M. Shariff, D.M. Beshir, M.A. Bustam, and S. Maitra, Trans. Indian Ceram. Soc. 69, 83 (2010).

    Google Scholar 

  205. 205.

    B. Mathieu, S. Blacher, R. Pirard, J.P. Pirard, B. Sahouli, and F. Brouers, J. Non-Cryst. Solids 212, 250 (1997).

    Google Scholar 

  206. 206.

    A. Cyganiuk, O. Gorska, A. Olejniczak, and J.P. Lukaszewicz, J. Anal. Appl. Pyrol. 98, 15 (2012).

    Google Scholar 

  207. 207.

    Y.V. Tamarkina, V.A. Kucherenko, and T.G. Shendrik, Solid Fuel Chem. 49, 91 (2015).

    Google Scholar 

  208. 208.

    Y. Sato, Y. Kikuchi, T. Nakamo, G. Okuno, K. Kobayakawa, T. Kawai, and A. Yokoyama, J. Power Sources 81–82, 182 (1999).

    Google Scholar 

  209. 209.

    A. Romero, M.P. Lavin-Lopez, L. Sanchez-Silva, J.L. Valverde, and A. Paton-Carrero, Mater. Chem. Phys. 203, 284 (2018).

    Google Scholar 

  210. 210.

    T. Ishii, Y. Kaburagi, A. Yoshida, Y. Hishiyama, H. Oka, N. Setoyama, J. Ozaki, and T. Kyotani, Carbon 125, 146 (2017).

    Google Scholar 

  211. 211.

    X. Gong and S. Zhang, J. Anal. Appl. Pyrol. 127, 170 (2017).

    Google Scholar 

  212. 212.

    B.K. Pradhan and N.K. Sandle, Carbon 37, 1323 (1999).

    Google Scholar 

  213. 213.

    I.V. Moskalev, D.M. Kiselkov, V.N. Strenikov, V.A. Valtsifer, and K.A. Lykova, Coke Chem. 57, 98 (2014).

    Google Scholar 

  214. 214.

    X. Yue, H. Wang, S. Wang, F. Zhang, and R. Zhang, J. Alloy. Compd. 505, 286 (2010).

    Google Scholar 

  215. 215.

    S. Cui, R. Canet, A. Derre, M. Couzi, and P. Delhaes, Carbon 41, 797 (2003).

    Google Scholar 

  216. 216.

    C. Gupta, P.H. Maheshwari, and S.R. Dhakate, Mater. Renew. Sustain. Energy 5, 2 (2016).

    Google Scholar 

  217. 217.

    P. Delhaes, M. Couzi, M. Trinquecoste, J. Dentzer, H. Hamidou, and C. Vix-Guterl, Carbon 44, 3005 (2006).

    Google Scholar 

  218. 218.

    G.L. Baker, A. Gupta, M.L. Clark, B.R. Valenzuela, L.M. Staska, S.J. Harbo, J.T. Pierce, and J.A. Dill, Toxicol. Sci. 10, 122 (2008).

    Google Scholar 

  219. 219.

    F.J. Maldonado-Hodar, C. Moreno-Castilla, J. Rivera-Utrilla, Y. Hanzawa, and Y. Yamada, Langmuir 16, 4367 (2000).

    Google Scholar 

  220. 220.

    Z.M. Markovic, B.M. Babic, M.D. Dramicanin, I.D. Holclajtner Antunovic, V.B. Pavlovic, D.B. Perusko, and B.M. Todorovic Markovic, Synth. Met. 162, 743 (2012).

    Google Scholar 

  221. 221.

    S.J. Hill, W.J. Grigsby, and P.W. Hall, Biomass Bioenergy 56, 92 (2013).

    Google Scholar 

  222. 222.

    F. Min, M. Zhang, Y. Zhang, Y. Cao, and W.P. Pan, J. Anal. Appl. Pyrol. 92, 250 (2011).

    Google Scholar 

  223. 223.

    H. Takagi, K. Maruyama, N. Yoshizawa, Y. Yamada, and Y. Sato, Fuel 83, 2427 (2004).

    Google Scholar 

  224. 224.

    Y. Li, Y.S. Hu, H. Li, L. Chen, and X. Huang, J. Mater. Chem. A 4, 96 (2016).

    Google Scholar 

Download references

Acknowledgments

The authors would particularly like to thank Dr. Krzysztof Koziol from Department of Materials Science and Metallurgy, Cambridge University, UK for giving opportunity to synthesize CNTs. Recognition is also due to MSc Elżbieta Szatkowska for her laboratory help in carbon aerogels synthesis. Authors would like to thank Institute of Non-Ferrous Metals for the ability to prepare this paper with particular thanks due to Andrzej Chmielarz and Katarzyna Leszczyńska-Sejda. Authors deeply appreciate contribution of MSc Katarzyna Bilewska in evaluation of x-ray powder diffraction results. Authors would also like to thank National Science Center, Poland (under the Polonez program, Grant Agreement UMO-2015/19/P/ST5/03799) and the European Union’s Horizon 2020 research and innovation programme (Marie Skłodowska-Curie Grant Agreement 665778). Authors would also like to acknowledge Foundation for Polish Science for START scholarship (START 025.2017), the Ministry for Science and Higher Education for the scholarship for outstanding young scientists (0388/E-367/STYP/12/2017) and the Rector of the Silesian University of Technology in Gliwice for the Pro-Quality Grant (04/020/RGJ18/0057).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mateusz Ciszewski.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ciszewski, M., Koszorek, A., Radko, T. et al. Review of the Selected Carbon-Based Materials for Symmetric Supercapacitor Application. Journal of Elec Materi 48, 717–744 (2019). https://doi.org/10.1007/s11664-018-6811-7

Download citation

Keywords

  • Carbon
  • carbon gel
  • coal tar pitch
  • carbonized materials
  • energy storage
  • supercapacitors