Skip to main content
Log in

Thermal Annealing Effects on the Electrical and Structural Properties of Ni/Pt Schottky Contacts on the Quaternary AlInGaN Epilayer

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Pt/Au, Ni/Au, Ni/Pt/Au Schottky contacts were placed on a quaternary Al0.84In0.13Ga0.03N epilayer. The electrical and structural properties of the as-deposited Pt/Au, Ni/Au, Ni/Pt/Au and annealed Ni/Pt/Au Schottky contacts were investigated as a function of annealing temperature using current–voltage (I–V), capacitance–voltage (CV), and high resolution x-ray diffraction measurements (HR-XRD). According to the I–V, Norde, and CV methods, the highest Schottky barrier height (SBH) was obtained for the Pt/Au (0.82 eV (I–V), 0.83 eV (Norde), and 1.09 eV (CV)) contacts when they were compared with the other as-deposited Schottky contacts. The estimated SBH of the annealed Ni/Pt/Au Schottky contacts, calculated from the I–V results, were 0.80 eV, 0.79 eV, and 0.78 eV at 300°C, 400°C, and 500°C, respectively. The SBH decreases with an increase in the annealing temperature up to 500°C compared with that of the as-deposited Ni/Pt/Au Schottky contact. The observed extra peaks in the annealed samples confirm the formation of a new interfacial phase at the interface. However, the diffraction patterns of the annealed Schottky contacts did not change as a function of the annealing temperature. The higher ideality factors values were obtained for as-deposited Pt/Au (5.69), Ni/Au (6.09), and Ni/Pt/Au (6.42) Schottky contacts and annealed Ni/Pt/Au (6.42) Schottky contacts at 300°C (6.89), 400°C (7.43), and 500°C (8.04). The higher n results can be attributed to current-transport mechanisms other than thermionic emission, such as dislocation related tunneling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E. Levinshtein, S.L. Rumyantsev, and M.S. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe (New York: Wiley, 2001). ISBN 978-0-471-35827-5.

    Google Scholar 

  2. R.S. Pengelly, S.M. Wood, J.W. Milligan, S.T. Sheppard, and W.L. Pribble, IEEE Trans. Microw. Theory Tech. 60, 1764 (2012).

    Article  Google Scholar 

  3. S. Nakamura, Science 281, 956 (1998).

    Article  Google Scholar 

  4. N. Ketteniss, L.R. Khoshroo, M. Eickelkamp, M. Heuken, H. Kalisch, R.H. Jansen, and A. Vescan, Semicond. Sci. Technol. 25, 075013 (2010).

    Article  Google Scholar 

  5. T. Lim, R. Aidam, P. Waltereit, T. Henkel, R. Quay, R. Lozar, T. Maier, L. Kirste, and O. Ambacher, IEEE Electron. Dev. Lett. 31, 671 (2010).

    Article  Google Scholar 

  6. H. Hirayama, J. Appl. Phys. 97, 091101 (2005).

    Article  Google Scholar 

  7. R. Wang, G. Li, J. Verma, B.S. Rodriguez, T. Fang, J. Guo, Z. Hu, O. Laboutin, Y. Cao, W. Johnson, G. Snider, P. Fay, D. Jena, and H. Xing, IEEE Electron. Dev. Lett. 32, 1215 (2011).

    Article  Google Scholar 

  8. B. Reuters, A. Wille, B. Hollander, E. Sakalauskas, N. Ketteniss, C. Mauder, R. Goldhahn, M. Heuken, H. Kalisch, and A. Vescan, J. Electron. Mater. 41, 905 (2012).

    Article  Google Scholar 

  9. B. Reuters, A. Wille, N. Ketteniss, H. Hahn, B. Hollander, M. Heuken, H. Kalisch, and A. Vescan, J. Electron. Mater. 42, 826 (2013).

    Article  Google Scholar 

  10. S.L. Rumyantsev, N. Pala, M.S. Shur, R. Gaska, M.E. Levinshtein, M. Asif Khan, G. Simin, X. Hu, and J. Yang, J. Appl. Phys. 88, 6726 (2000).

    Article  Google Scholar 

  11. S. Karboyan, J.G. Tartarin, M. Rzin, L. Brunel, A. Curutchet, N. Malbert, N. Labat, D. Carisetti, B. Lambert, M. Mermoux, E. Romain-Latu, F. Thomas, C. Bouexière, and C. Moreau, Microelectron. Reliab. 53, 1491 (2013).

    Article  Google Scholar 

  12. D. Marcon, T. Kauerauf, F. Medjdoub, J. Das, M. Van Hove, P. Srivastava, K. Cheng, M. Leys, R. Mertens, S. Decoutere, G. Meneghesso, E. Zanoni, and G. Borghs, in IEEE International Electron Devices Meeting, 20.3.1, 2010

  13. F. Lee, L.-Y. Su, C.-H. Wang, Y.-R. Wu, and J. Huang, IEEE Electron. Dev. Lett. 36, 232 (2015).

    Article  Google Scholar 

  14. E. Arslan, Ş. Altındal, S. Özçelik, and E. Ozbay, Semicond. Sci. Technol. 24, 075003 (2009).

    Article  Google Scholar 

  15. J. Ren, D. Yan, G. Yang, F. Wang, S. Xiao, and X. Gu, J. Appl. Phys. 117, 154503 (2015).

    Article  Google Scholar 

  16. A. Kumar, M. Latzel, S. Christiansen, V. Kumar, and R. Singh, Appl. Phys. Lett. 107, 093502 (2015).

    Article  Google Scholar 

  17. Y. Koyama, T. Hashizume, and H. Hasegawa, Solid-State Electron. 43, 1483 (1999).

    Article  Google Scholar 

  18. E. Monroy, F. Calle, R. Ranchal, T. Palacios, M. Verdu, F.J. Sanchez, M.T. Montojo, M. Eickhoff, F. Omnes, Z. Bougriouaand, and I. Moerman, Semicond. Sci. Technol. 17, L47 (2002).

    Article  Google Scholar 

  19. S. Arulkumaran, T. Egawa, H. Ishikawa, M. Umeno, and T. Jimbo, IEEE Trans. Electron. Dev. 48, 573 (2001).

    Article  Google Scholar 

  20. L. Fang, S. Bo, L. Li-Wu, M. Nan, X. Fu-Jun, M. Zhen-Lin, S. Jie, L. Xin-Yu, W. Ke, and H. Jun, Chin. Phys. B 19, 127304 (2010).

    Article  Google Scholar 

  21. J. Pedrós, R. Cuerdo, R. Lossy, N. Chaturvedi, J. Würf, and F. Calle, Phys. Status Solidi (C) 3, 1709 (2006).

    Article  Google Scholar 

  22. S. Kim, H.J. Kim, S. Choi, J.-H. Ryou, R.D. Dupuis, K.-S. Ahn, and H. Kim, Jpn. J. Appl. Phys. 52, 10MA05 (2013).

    Article  Google Scholar 

  23. R. Khanna, S.J. Pearton, F. Ren, and I. Kravchenko, Appl. Surf. Sci. 252, 5814 (2006).

    Article  Google Scholar 

  24. V.R. Reddy, M. Ravinandan, P. Koteswara Rao, and C.-J. Choi, J. Mater. Sci. Mater. Electron. 20, 1018 (2009).

    Article  Google Scholar 

  25. J. Wang, D.G. Zhao, Y.P. Sun, L.H. Duan, Y.T. Wang, S.M. Zhang, H. Yang, S. Zhou, and M. Wu, J. Phys. D Appl. Phys. 36, 1018 (2003).

    Article  Google Scholar 

  26. T.N. Order, P. Martin, J.Y. Lin, H.X. Jiang, J.R. Williams, and T. Isaacs-Smith, Appl. Phys. Lett. 88, 183505 (2006).

    Article  Google Scholar 

  27. N. Miura, T. Nanjo, M. Suita, T. Oishi, Y. Abe, T. Ozeki, H. Ishikawa, T. Egawa, and T. Jimbo, Solid-State Electron. 48, 689 (2004).

    Article  Google Scholar 

  28. K.J. Reddy, V.R. Reddy, and E.P.N. Reddy, J. Mater. Sci. Mater. Electron. 19, 333 (2008).

    Article  Google Scholar 

  29. A. Akkaya, L. Esmer, B.B. Kantar, H. Çetin, and E. Ayyıldız, Microelectron. Eng. 130, 62 (2014).

    Article  Google Scholar 

  30. G. Greco, F. Iucolano, S.D. Franco, C. Bongiorno, A. Patti, and F. Roccaforte, IEEE Trans. Electron. Dev. 63, 2735 (2016).

    Article  Google Scholar 

  31. Y. Liu, H. Jiang, T. Egawa, B. Zhang, and H. Ishikawa, J. Appl. Phys. 99, 123702 (2006).

    Article  Google Scholar 

  32. M.A. Laurent, G. Gupta, D.J. Suntrup III, S.P. DenBaars, and U.K. Mishra, J. Appl. Phys. 119, 064501 (2016).

    Article  Google Scholar 

  33. Y. Liu, T. Egawa, H. Jiang, B. Zhang, H. Ishikawa, and M. Hao, Appl. Phys. Lett. 85, 6030 (2004).

    Article  Google Scholar 

  34. A.J. Ghazai, H.A. Hassan, Z. Hassan, and A.S. Hussein, Optoelectron. Adv. Mater. Rapid Commun. 6, 324 (2012).

    Google Scholar 

  35. M. Gökçen and M. Yıldırım, Chin. Phys. B 21, 128502 (2012).

    Article  Google Scholar 

  36. K. Akkılıç, A. Türüt, G. Cankaya, and T. Kılıçoğlu, Solid-State Commun. 125, 551 (2003).

    Article  Google Scholar 

  37. E. Arslan, S. Bütün, Y. Şafak, H. Uslu, İ. TaŞçıoğlu, Ş. Altındal, and E. Özbay, Microelectron. Reliab. 51, 370 (2011).

    Article  Google Scholar 

  38. H. Card and E. Rhoderick, J. Phys. D Appl. Phys. 4, 1589 (1971).

    Article  Google Scholar 

  39. S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed. (Hoboken: Wiley, 2006).

    Book  Google Scholar 

  40. H. Morkoç, Handbook of Nitride Semiconductors and Devices, Vol. 1 (Weinheim: Wiley, 2008). ISBN 978-3-527-40837-5.

    Book  Google Scholar 

  41. S. Zhang, B. Liu, J.Y. Yin, H.H. Sun, Z.H. Feng, and L.C. Zhao, J. Phys. D Appl. Phys. 44, 075405 (2011).

    Article  Google Scholar 

  42. N. Nanda, K. Reddy, and V. Rajagopal Reddy, Bull. Mater. Sci. 35, 53 (2012).

    Article  Google Scholar 

  43. E. Arslan, Ş. Altındal, S. Özçelik, and E. Özbay, J. Appl. Phys. 105, 023705 (2009).

    Article  Google Scholar 

  44. E.H. Nicollian and J.R. Brews, Metal Oxide Semiconductor (MOS) Physics and Technology (New York: Wiley, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Engin Arslan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, E., Altındal, Ş., Ural, S. et al. Thermal Annealing Effects on the Electrical and Structural Properties of Ni/Pt Schottky Contacts on the Quaternary AlInGaN Epilayer. J. Electron. Mater. 48, 887–897 (2019). https://doi.org/10.1007/s11664-018-6802-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6802-8

Keywords

Navigation