Skip to main content
Log in

Thermoelectric Coolers (TECs): From Theory to Practice

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermoelectric coolers (TECs) are solid state units, which provide reliable energy conversion with no noise or vibration. They are also lightweight and do not include any moving parts. The current coefficient of performance (COP) range of TECs has shown a trend of improvement, and TECs have a wide range of usage areas. Within the scope of this research, TECs are comprehensively evaluated in terms of several aspects such as type, material, design, modelling, thermal performance, potential applications, economic and environmental issues. It can be achieved through the results that the COP of TECs is highly dependent on the temperature difference between hot and cold side (ΔT), and maximum COP is obtained when ΔT is close to zero. It is also observed that COP can be enhanced by more than 55% when the hot side is thermally regulated by phase change materials (PCMs) or integrated with a water cooling unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Chen, C. Wang, and C. Hung, Energy Convers. Manag. 87, 566 (2014).

    Google Scholar 

  2. Y.-X. Huang, X.-D. Wang, C.-H. Cheng, and D.T.-W. Lin, Energy 59, 689 (2013).

    Google Scholar 

  3. C.Y. Du and C. Da Wen, Int. J. Heat Mass Transf. 54, 4875 (2011).

    Google Scholar 

  4. J. Yu and B. Wang, Int. J. Refrig. 32, 32 (2009).

    Google Scholar 

  5. C.H. Cheng and S.Y. Huang, Appl. Energy 100, 326 (2012).

    Google Scholar 

  6. W. Zhu, Y. Deng, Y. Wang, and A. Wang, Microelectron. J. 44, 860 (2013).

    Google Scholar 

  7. W.H. Chen, C.Y. Liao, and C.I. Hung, Appl. Energy 89, 464 (2012).

    Google Scholar 

  8. S.B. Riffat and X. Ma, Int. J. Energy Res. 28, 753 (2004).

    Google Scholar 

  9. H.Y. Zhang, Int. J. Refrig. 33, 1187 (2010).

    Google Scholar 

  10. S. Lin, M. Ma, J. Wang, and J. Yu, Appl. Energy 180, 628 (2016).

    Google Scholar 

  11. H. Lv, X.D. Wang, J.H. Meng, T.H. Wang, and W.M. Yan, Appl. Energy 175, 285 (2016).

    Google Scholar 

  12. M. Ma and J. Yu, Int. J. Refrig 38, 352 (2014).

    Google Scholar 

  13. R.V. Rao and V. Patel, Eng. Appl. Artif. Intell. 26, 430 (2013).

    Google Scholar 

  14. S. Manikandan and S.C. Kaushik, Energy 100, 227 (2016).

    Google Scholar 

  15. G.S. Hwang, A.J. Gross, H. Kim, S.W. Lee, N. Ghafouri, B.L. Huang, C. Lawrence, C. Uher, K. Najafi, and M. Kaviany, Int. J. Heat Mass Transf. 52, 1843 (2009).

    Google Scholar 

  16. G. Karimi, J.R. Culham, and V. Kazerouni, Int. J. Refrig. 34, 2129 (2011).

    Google Scholar 

  17. S. Manikandan and S.C. Kaushik, Energy Convers. Manag. 106, 804 (2015).

    Google Scholar 

  18. I.-Y. Huang, J.-C. Lin, K.-D. She, M.-C. Li, J.-H. Chen, and J.-S. Kuo, Sens Actuators A Phys. 148, 176 (2008).

    Google Scholar 

  19. K. Park, S.W. Nam, and C.H. Lim, Intermetallics 18, 1744 (2010).

    Google Scholar 

  20. S.T. Han, P. Rimal, C.H. Lee, H.S. Kim, Y. Sohn, and S.J. Hong, Intermetallics 78, 42 (2016).

    Google Scholar 

  21. H.M. Hu, T.S. Ge, Y.J. Dai, and R.Z. Wang, Energy Convers. Manag. 103, 981 (2015).

    Google Scholar 

  22. S. Lin and J. Yu, Int. J. Refrig. 65, 103 (2016).

    Google Scholar 

  23. D. Zhao and G. Tan, Appl. Therm. Eng. 66, 15 (2014).

    Google Scholar 

  24. H. Alam and S. Ramakrishna, Nano Energy 2, 190 (2013).

    Google Scholar 

  25. L.D. Zhao, B.P. Zhang, W.S. Liu, H.L. Zhang, and J.F. Li, J. Alloys Compd. 467, 91 (2009).

    Google Scholar 

  26. L.D. Zhao, B.P. Zhang, J.F. Li, H.L. Zhang, and W.S. Liu, Solid State Sci. 10, 651 (2008).

    Google Scholar 

  27. H.-S. Kim and S.-J. Hong, J. Alloys Compd. 586, 428 (2014).

    Google Scholar 

  28. M. Takashiri, K. Miyazaki, S. Tanaka, J. Kurosaki, D. Nagai, and H. Tsukamoto, J. Appl. Phys. 104, 84302 (2008).

    Google Scholar 

  29. Z.G. Chen, G. Hana, L. Yanga, L. Cheng, and J. Zou, Prog. Nat. Sci. Mater. Int. 22, 535 (2012).

    Google Scholar 

  30. Z. Chen, M.Y. Lin, G.D. Xu, S. Chen, J.H. Zhang, and M.M. Wang, J. Alloys Compd. 588, 384 (2014).

    Google Scholar 

  31. A.A. Usenko, D.O. Moskovskikh, M.V. Gorshenkov, A.V. Korotitskiy, S.D. Kaloshkin, A.I. Voronin, and V.V. Khovaylo, Scr. Mater. 96, 9 (2015).

    Google Scholar 

  32. O.J. Dura, R. Andujar, M. Falmbigl, P. Rogl, M.A. López de la Torre, and E. Bauer, J. Alloys Compd. 711, 381 (2017).

    Google Scholar 

  33. Y. Yin, B. Tudu, and A. Tiwari, Vacuum 146, 356 (2017).

    Google Scholar 

  34. G. Ding, J. Si, H. Wu, S. Yang, J. Zhao, and G. Wang, J. Alloys Compd. 662, 368 (2016).

    Google Scholar 

  35. S. Jo, S.H. Park, H.W. Ban, D.H. Gu, B.S. Kim, J.H. Son, H.K. Hong, Z. Lee, H.S. Han, W. Jo, J.E. Lee, and J.S. Son, J. Alloys Compd. 689, 899 (2016).

    Google Scholar 

  36. F.K. Butt, B. Ul Haq, S. ur Rehman, R. Ahmed, C. Cao, and S. AlFaifi, J. Alloys Compd. 715, 438 (2017).

    Google Scholar 

  37. R. Ovik, B.D. Long, M.C. Barma, M. Riaz, M.F.M. Sabri, S.M. Said, and R. Saidur, Renew. Sustain. Energy Rev. 64, 635 (2016).

    Google Scholar 

  38. S. Leblanc, S.K. Yee, M.L. Scullin, C. Dames, and K.E. Goodson, Renew. Sustain. Energy Rev. 32, 313 (2014).

    Google Scholar 

  39. P. Pichanusakorn and P. Bandaru, Mater. Sci. Eng. R Rep 67, 19 (2010).

    Google Scholar 

  40. W. Liu, Q. Zhang, K. Yin, H. Chi, X. Zhou, X. Tang, and C. Uher, J. Solid State Chem. 203, 333 (2013).

    Google Scholar 

  41. C. Gayner and K.K. Kar, Prog. Mater Sci. 83, 330 (2016).

    Google Scholar 

  42. X. Guo, J. Qin, X. Jia, H. Ma, and H. Jia, J. Alloys Compd. 705, 363 (2017).

    Google Scholar 

  43. H. Wu, B.Y. Chen, and H.Y. Cheng, Acta Mater. 122, 120 (2017).

    Google Scholar 

  44. Z.-L. Wang, T. Akao, T. Onda, and Z.-C. Chen, J. Alloys Compd. 663, 134 (2016).

    Google Scholar 

  45. Z. Liu, J. Mao, S. Peng, B. Zhou, W. Gao, J. Sui, Y. Pei, and Z. Ren, Mater. Today Phys. 2, 54 (2017).

    Google Scholar 

  46. J. Sun, J. Shuai, Z. Ren, and D.J. Singh, Mater. Today Phys. 2, 40 (2017).

    Google Scholar 

  47. K. Zhao, P. Qiu, Q. Song, A.B. Blichfeld, E. Eikeland, D. Ren, B. Ge, B.B. Iversen, X. Shi, and L. Chen, Mater. Today Phys. 1, 14 (2017).

    Google Scholar 

  48. T. Fu, X. Yue, H. Wu, C. Fu, T. Zhu, X. Liu, L. Hu, P. Ying, J. He, and X. Zhao, J. Mater. 2, 141 (2016).

    Google Scholar 

  49. K. Zhao, M. Guan, P. Qiu, A. Blichfeld, E. Eikeland, C. Zhu, D. Ren, F. Xu, B. Iversen, X. Shi, and L. Chen, J. Mater. Chem A. 6, 6977 (2018).

    Google Scholar 

  50. A.U. Khan, K. Kobayashi, D.-M. Tang, Y. Yamauchi, K. Hasegawa, M. Mitome, Y. Xue, B. Jiang, K. Tsuchiya, D. Golberg, Y. Bando, and T. Mori, Nano Energy 31, 152 (2017).

    Google Scholar 

  51. Z.-L. Wang, T. Araki, T. Onda, and Z.-C. Chen, Scr. Mater. 141, 89 (2017).

    Google Scholar 

  52. Z.L. Wang, T. Onda, Z.C. Chen, and T. Akao, Scr. Mater. 136, 111 (2017).

    Google Scholar 

  53. A.U. Khan, N. Vlachos, and T. Kyratsi, Scr. Mater. 69, 606 (2013).

    Google Scholar 

  54. S. Populoh, M.H. Aguirre, O.C. Brunko, K. Galazka, Y. Lu, and A. Weidenkaff, Scr. Mater. 66, 1073 (2012).

    Google Scholar 

  55. M. Gürth, G. Rogl, V.V. Romaka, A. Grytsiv, E. Bauer, and P. Rogl, Acta Mater. 104, 210 (2016).

    Google Scholar 

  56. F.L. Tan and S.C. Fok, Energy Convers. Manag. 49, 1715 (2008).

    Google Scholar 

  57. H. Lee, Appl. Energy 106, 79 (2013).

    Google Scholar 

  58. M.K. Russel, D. Ewing, and C.Y. Ching, Appl. Therm. Eng. 50, 652 (2013).

    Google Scholar 

  59. A. Sarkar and S.K. Mahapatra, Appl. Therm. Eng. 69, 39 (2014).

    Google Scholar 

  60. Y.H. Cheng and W.K. Lin, Appl. Therm. Eng. 25, 2983 (2005).

    Google Scholar 

  61. X.C. Xuan, Energy Convers. Manag. 44, 399 (2003).

    Google Scholar 

  62. H. Tan, H. Fu, and J. Yu, Appl. Therm. Eng. 123, 845 (2017).

    Google Scholar 

  63. Y. Pan, B. Lin, and J. Chen, Appl. Energy 84, 882 (2007).

    Google Scholar 

  64. B.J. Huang, C.J. Chin, and C.L. Duang, Int. J. Refrig. 23, 208 (2000).

    Google Scholar 

  65. J. Yu, H. Zhao, and K. Xie, Cryogenics 47, 89 (2007).

    Google Scholar 

  66. N. Putra, W. Sukyono, D. Johansen, and F.N. Iskandar, Cryogenics. 50, 759 (2010).

    Google Scholar 

  67. Y.W. Gao, H. Lv, X.D. Wang, and W.M. Yan, Int. J. Heat Mass Transf. 114, 656 (2017).

    Google Scholar 

  68. T.H. Wang, Q.H. Wang, C. Leng, and X.D. Wang, Appl. Energy 154, 1 (2015).

    Google Scholar 

  69. X.C. Xuan, K.C. Ng, C. Yap, and H.T. Chua, Energy Convers. Manag. 43, 2041 (2002).

    Google Scholar 

  70. X.D. Wang, Q.H. Wang, and J.L. Xu, Energy 65, 419 (2014).

    Google Scholar 

  71. A. Nemati, H. Nami, M. Yari, and F. Ranjbar, Int. J. Refrig. 17, 30353 (2017).

    Google Scholar 

  72. D. Kim, C. Lim, and Y. Kim, Energy Prod Manag. 2, 1237 (2014).

    Google Scholar 

  73. R.A. Khire, A. Messac, and S. Van Dessel, Int. J. Heat Mass Transf. 48, 4028 (2005).

    Google Scholar 

  74. M. Chen and G.J. Snyder, Int. J. Heat Mass Transf. 60, 689 (2013).

    Google Scholar 

  75. X. Wang, J. Yu, and M. Ma, Int. J. Heat Mass Transf. 63, 361 (2013).

    Google Scholar 

  76. J. Li, B. Ma, R. Wang, and L. Han, Microelectron. Reliab. 51, 2210 (2011).

    Google Scholar 

  77. J.-H. Meng, X.-D. Wang, and X.-X. Zhang, Appl. Energy 108, 340 (2013).

    Google Scholar 

  78. D. Liu, F.Y. Zhao, H.X. Yang, and G.F. Tang, Energy 83, 29 (2015).

    Google Scholar 

  79. L. Zhu, H. Tan, and J. Yu, Energy Convers. Manag. 76, 685 (2013).

    Google Scholar 

  80. M.M. Barry, K.A. Agbim, P. Rao, C.E. Clifford, B.V.K. Reddy, and M.K. Chyu, Energy 112, 388 (2016).

    Google Scholar 

  81. S. Göktun, Energy Sources 18, 531 (1996).

    Google Scholar 

  82. J.Y. Liu and C. Da Wen, Numer. Heat Transf. Part A Appl. 60, 519 (2011).

    Google Scholar 

  83. A. Hadidi, Appl. Therm. Eng. 123, 514 (2017).

    Google Scholar 

  84. L. Chen, J. Li, F. Sun, and C. Wu, Appl. Energy 85, 641 (2008).

    Google Scholar 

  85. Y.H. Cheng and C. Shih, Appl. Therm. Eng. 26, 937 (2006).

    Google Scholar 

  86. M.A. Olivares-Robles, C. Ramirez-Lopez, and F. Vazquez, Entropy 14, 1539 (2012).

    Google Scholar 

  87. A. Razani, T. Fraser, and C. Dodson, AIP Conf. Proc. 1434, 1899 (2012).

    Google Scholar 

  88. X.C. Xuan, K.C. Ng, C. Yap, and H.T. Chua, Cryogenics 42, 273 (2002).

    Google Scholar 

  89. F. Meng, L. Chen, and F. Sun, Math. Comput. Model. 52, 586 (2010).

    Google Scholar 

  90. H. Zhang, W. Kong, F. Dong, H. Xu, B. Chen, and M. Ni, Energy Convers. Manag. 148, 1382 (2017).

    Google Scholar 

  91. H.S. Huang, Y.C. Weng, Y.W. Chang, S.L. Chen, and M.T. Ke, Int. Commun. Heat Mass Transf. 37, 140 (2010).

    Google Scholar 

  92. S.A. Ali and S. Mazumder, Int. J. Heat Mass Transf. 62, 373 (2013).

    Google Scholar 

  93. R. Arora and R. Arora, J. Emerg. Technol. Innov. Res. 5, 820 (2018).

    Google Scholar 

  94. H. Nami, A. Nemati, M. Yari, and F. Ranjbar, Appl. Therm. Eng. 124, 756 (2017).

    Google Scholar 

  95. S. Sharma, V.K. Dwivedi, and S.N. Pandit, Int. J. Energy Res. 38, 213 (2014).

    Google Scholar 

  96. J. Chen, Y. Zhou, H. Wang, and J.T. Wang, Appl. Energy 73, 285 (2002).

    Google Scholar 

  97. S.B. Riffat and X. Ma, Appl. Therm. Eng. 23, 913 (2003).

    Google Scholar 

  98. S. Twaha, J. Zhu, Y. Yan, and B. Li, Renew. Sustain. Energy Rev. 65, 698 (2016).

    Google Scholar 

  99. R. Chein and G. Huang, Appl. Therm. Eng. 24, 2207 (2004).

    Google Scholar 

  100. Y.W. Chang, C.C. Chang, M.T. Ke, and S.L. Chen, Appl. Therm. Eng. 29, 2731 (2009).

    Google Scholar 

  101. N. Ahammed, L.G. Asirvatham, and S. Wongwises, Exp. Therm. Fluid Sci. 74, 81 (2016).

    Google Scholar 

  102. P. Naphon and S. Wiriyasart, Int. Commun. Heat Mass Transf. 36, 166 (2009).

    Google Scholar 

  103. N. Putra and F.N. Iskandar, Exp. Therm. Fluid Sci. 35, 1274 (2011).

    Google Scholar 

  104. C.A. Gould, N.Y.A. Shammas, S. Grainger, and I. Taylor, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 176, 316 (2011).

    Google Scholar 

  105. R.C. Chu, J. Electron. Packag. 126, 491 (2004).

    Google Scholar 

  106. L. Chen, F. Meng, and F. Sun, Cryogenics 52, 58 (2012).

    Google Scholar 

  107. C.F.A. Afonso, Appl. Therm. Eng. 26, 1961 (2006).

    Google Scholar 

  108. R.M. Dubey and A. Singh, Int. Res. J. Eng. Technol. 23, 313 (2017).

    Google Scholar 

  109. S.B. Riffat, S.A. Omer, and X. Ma, Renew. Energy 23, 313 (2001).

    Google Scholar 

  110. S. Tassou, J. Lewis, and Y. Ge, Appl. Therm. 30, 263 (2010).

    Google Scholar 

  111. M.K. Rawat, H. Chattopadhyay, and S. Neogi, Int. J. Emerg. Technol. Adv. Eng. 3, 362 (2013).

    Google Scholar 

  112. G. Min and D.M. Rowe, Appl. Energy 83, 133 (2006).

    Google Scholar 

  113. S.D. Patil and K.D. Devade, Ijmter. 2, 118 (2015).

    Google Scholar 

  114. S. Jugsujinda, A. Vora-Ud, and T. Seetawan, Proc. Eng. 8, 154 (2011).

    Google Scholar 

  115. S. Palaniappan and B. Palanisamy, Proc. Eng. 64, 1056 (2013).

    Google Scholar 

  116. S.A. Abdul-Wahab, A. Elkamel, A.M. Al-Damkhi, I.A. Al-Habsi, H.S. Al Rubai’ey’, A.K. Al-Battashi, A.R. Al-Tamimi, K.H. Al-Mamari, and M.U. Chutani, Renew. Energy 34, 30 (2009).

    Google Scholar 

  117. Y.J. Dai, R.Z. Wang, and L. Ni, Sol. Energy Mater. Sol. Cells 77, 377 (2003).

    Google Scholar 

  118. J.G. Vián and D. Astrain, Appl. Therm. Eng. 29, 1935 (2009).

    Google Scholar 

  119. D. Astrain, J.G. Vián, and J. Albizua, Appl. Therm. Eng. 25, 3149 (2005).

    Google Scholar 

  120. A. Martinez, D. Astrain, A. Rodriguez, and P. Aranguren, Appl. Therm. Eng. 95, 339 (2016).

    Google Scholar 

  121. D. Astrain, P. Aranguren, A. Martínez, A. Rodríguez, and M.G. Pérez, Appl. Therm. Eng. 103, 1289 (2016).

    Google Scholar 

  122. C.J.L. Hermes and J.R. Barbosa, Appl. Energy 91, 51 (2012).

    Google Scholar 

  123. F. Jomehzadeh, P. Nejat, J.K. Calautit, M.B.M. Yusof, S.A. Zaki, B.R. Hughes, and M.N.A.W.M. Yazid, Renew. Sustain. Energy Rev. 70, 736 (2017).

    Google Scholar 

  124. A. Aflaki, N. Mahyuddin, Z. Al-Cheikh Mahmoud, and M.R. Baharum, Energy Build. 101, 153 (2015).

    Google Scholar 

  125. D. Ürge-Vorsatza, L. Cabeza, S. Serrano, C. Barreneche, and K. Petrichenko, Renew. Sustain. Energy Rev. 41, 85 (2015).

    Google Scholar 

  126. T. Wang, G. Foliente, X. Song, J. Xue, and D. Fang, Renew. Sustain. Energy Rev. 31, 520 (2014).

    Google Scholar 

  127. U.S. Environmental Protection Agency

  128. K. Irshad, K. Habib, F. Basrawi, N. Thirumalaiswamy, R. Saidur, and B.B. Saha, Appl. Therm. Eng. 91, 1141 (2015).

    Google Scholar 

  129. L. Shen, F. Xiao, H. Chen, and S. Wang, Energy Build. 59, 123 (2013).

    Google Scholar 

  130. S. Manikandan, S.C. Kaushik, and R. Yang, Energy Convers. Manag. 140, 145 (2017).

    Google Scholar 

  131. M. Gillott, L. Jiang, and S. Riffat, Int. J. Energy Res. 34, 776 (2010).

    Google Scholar 

  132. G. Tan and D. Zhao, Appl. Therm. Eng. 86, 187 (2015).

    Google Scholar 

  133. T. Han, G. Gong, Z. Liu, and L. Zhang, Appl. Therm. Eng. 67, 529 (2014).

    Google Scholar 

  134. H. Sadighi, S. Jafarmadar, S. Khalilarya, and A. Moosavi, Appl. Energy 181, 357 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdem Cuce.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guclu, T., Cuce, E. Thermoelectric Coolers (TECs): From Theory to Practice. J. Electron. Mater. 48, 211–230 (2019). https://doi.org/10.1007/s11664-018-6753-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6753-0

Keywords

Navigation