Skip to main content
Log in

The Potential for Metal–Carbon Nanotubes Composites as Interconnects

  • TMS2018 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Despite their high potential, carbon nanotubes (CNTs) are yet to be effectively utilized in microelectronics due to challenges involved with their fabrication and integration with current microelectronic materials. This manuscript summarizes the effort made in fabricating the CNT-Cu composites for interconnects in microelectronics. Chemical vapor deposition (CVD) and plasma enhanced CVD (PECVD) are used to grow CNTs on substrates covered with Ti, TiN and Al2O3 and several plating processes such as electroplating, electroless plating, and sputtering methods were used to create the Cu-CNT composite layer. The PECVD is the best approach in growing the CNT forest with the right density. The seed layers selected in this study were not effective in allowing electroplating to occur. The most successful method was to use TiN as an underlayer, PECVD for CNT growth and sputtering as plating technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Tans, A. Verschueren, and C. Dekker, Nature 393, 49 (1998).

    Article  Google Scholar 

  2. M. Nihei, A. Kawabata, D. Kondo, M. Horibe, S. Sato, and Y. Awano, Jpn. J. Appl. Phys. 44, 1626 (2005).

    Article  Google Scholar 

  3. F. Kreupl, A.P. Graham, G.S. Duesberg, W. Steinhögl, M. Liebau, E. Unger, and W. Hönlein, Microelectron. Eng. 64, 399 (2002).

    Article  Google Scholar 

  4. B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, and L.G. Bachas, Science 303, 62 (2004).

    Article  Google Scholar 

  5. H. Li, C. Xu, N. Srivastava, and K. Banerjee, IEEE Trans. Electron Devices 56, 1799 (2009).

    Article  Google Scholar 

  6. S. Joseph, R.J. Mashl, E. Jakobsson, and N.R. Aluru, Nano Lett. 3, 1399 (2003).

    Article  Google Scholar 

  7. L.M. Ang, T.S.A. Hor, G.Q. Xu, C.H. Tung, S.P. Zhao, and J.L.S. Wang, Carbon N. Y. 38, 363 (2000).

    Article  Google Scholar 

  8. X. Li, W.X. Chen, J. Zhao, W. Xing, and Z. De Xu, Carbon N. Y. 43, 2168 (2005).

    Article  Google Scholar 

  9. H.G. Park, Mass Transport Through Carbon Nanotubes, University of California at Berkley, 2007.

  10. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and P. Avouris, Appl. Phys. Lett. 73, 2447 (1998).

    Article  Google Scholar 

  11. V. Desmaris, A.M. Saleem, S. Shafiee, J. Berg, M.S. Kabir, and A. Johansson, in 2014 IEEE 64th Electron. Components Technol. Conf. (IEEE, 2014), pp. 1071–1076.

  12. Q. Ngo, T. Yamada, M. Suzuki, Y. Ominami, A.M. Cassell, and J. Li, IEEE Trans. Nanotechnol. 6, 688 (2007).

  13. Y. Ominami, Q. Ngo, M. Suzuki, A.J. Austin, C.Y. Yang, A.M. Cassell, and J. Li, Appl. Phys. Lett. 89, 263114 (2006).

    Article  Google Scholar 

  14. R. Salgado-Delgado, A. Olarte-Paredes, Z. Vargas-Galarza, E. García-Hernández, A.M. Salgado-Delgado, E. Rubio-Rosas, J. Campos-álvarez, and V.M. Castaño, J. Electron. Mater. 45, 5341 (2016).

    Article  Google Scholar 

  15. J.V.S. Moreira, E.J. Corat, P.W. May, L.D.R. Cardoso, P.A. Lelis, and H. Zanin, J. Electron. Mater. 45, 5781 (2016).

    Article  Google Scholar 

  16. M. Billah and Q. Chen, J. Electron. Mater. 45, 98 (2016).

    Article  Google Scholar 

  17. Q. Cao, S.-J. Han, J. Tersoff, A.D. Franklin, Y. Zhu, Z. Zhang, G.S. Tulevski, J. Tang, and W. Haensch, Science 350, 68 (2015).

    Article  Google Scholar 

  18. J. Svensson and E.E.B. Campbell, J. Appl. Phys. 110, 111101 (2011).

    Article  Google Scholar 

  19. M.P. Anantram and F. Léonard, Rep. Prog. Phys. 69, 507 (2006).

    Article  Google Scholar 

  20. J.-O. Lee, C. Park, J.-J. Kim, J. Kim, J.W. Park, and K.-H. Yoo, J. Phys. D Appl. Phys. 33, 1953 (2000).

    Article  Google Scholar 

  21. P.R. Yasasvi Gangavarapu, P.C. Lokesh, K.N. Bhat, and A.K. Naik, IEEE Trans. Electron Devices 64, 4335 (2017).

    Article  Google Scholar 

  22. M.P. Lilly, M.J. Walker, W.S. Miller, J.X. Przybysz, and A.E. Berghmans, US 9,570,695 B2 (2017).

  23. T. Yokogawa and S. Miyake, Proc. SPIE 10354, 103540O (2018).

    Google Scholar 

  24. S. Li, Y. Liu, S. Zhou, C. Zhou, and M. Chan, J. Mater. Chem. C 6, 5039 (2018).

    Article  Google Scholar 

  25. International Technology Working Groups. International Technology Roadmap for Semiconductors (2011).

  26. J.R. Black, IEEE Trans. Electron Devices 16, 338 (1969).

    Article  Google Scholar 

  27. Z.H. Cheng, W.S. Zhao, L. Dong, J. Wang, P. Zhao, H. Gao, and G. Wang, IEEE Trans. Nanotechnol. 16, 891 (2017).

    Google Scholar 

  28. J. Lee, J. Liang, S.M. Amoroso, T. Sadi, L. Wang, F. Asenov, A. Pender, D.T. Reid, V.P. Georgiev, C. Millar, A. Todri-Sanial, and A. Asenov, in Int. Conf. Simul. Semicond. Process. Devices, SISPAD (2017), pp. 153–156.

  29. S. Bistarelli, J. Liu, L. Pierantoni, and D. Mencarelli, IEEE Microw. Mag. 124 (2017).

  30. Q.Y. Yang, Z.H. Cheng, W.S. Zhao, and G. Wang, in IEEE Electron. Des. Adv. Packag. Syst. Symp. (Haining, China, 2017), pp. 7–10.

  31. C. Subramaniam, T. Yamada, K. Kobashi, A. Sekiguchi, D.N. Futaba, and M. Yumura, Nat. Commun. 4, 1 (2013).

    Article  Google Scholar 

  32. X. Chen, J. Xia, J. Peng, W. Li, and S. Xie, Compos. Sci. Technol. 60, 301 (2000).

    Article  Google Scholar 

  33. K.T.E. Dujardin, T.W. Ebbesen, H. Hiura, Science (80-.). 265, 1850 (19894).

  34. F. Wang, S. Arai, and M. Endo, Electrochem. Commun. 6, 1042 (2004).

    Article  Google Scholar 

  35. S. Suárez, L. Reinert, and F. Mücklich, in Diam. Carbon Compos. Nanocomposites (2016), pp. 130–180.

  36. C.L.P. Pavithra, B.V. Sarada, K.V. Rajulapati, T.N. Rao, and G. Sundararajan, Sci. Rep. 4, 4049 (2014).

    Article  Google Scholar 

  37. S. Arai and T. Osaki, J. Electrochem. Soc. 162, D68 (2014).

    Article  Google Scholar 

  38. Y. Pan, Y. Liu, T. Wang, and X. Lu, Microelectron. Eng. 105, 18 (2013).

    Article  Google Scholar 

  39. L. Ladani, I. Awad, Y. She, S. Dardona, and W. Schmidt, Mater. Today Commun. 11, 123 (2017).

    Article  Google Scholar 

  40. K. Yokota, K. Nakamura, T. Kasuya, K. Mukai, and M. Ohnishi, J. Phys. D Appl. Phys. 37, 1095 (2004).

    Article  Google Scholar 

  41. Z.P. Huang, D.Z. Wang, J.G. Wen, M. Sennett, H. Gibson, and Z.F. Ren, Appl. Phys. A Mater. Sci. Process. 74, 387 (2002).

    Article  Google Scholar 

  42. C.J. Lee, J. Park, Y. Huh, and J. Yong, Chem. Phys. Lett. 343, 33 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

This paper is based upon research funded by the National Science Foundation under CMMI Grant Number 1734983. The authors would like to express their profound gratitude to the support from NSF. We are also very thankful for the facilities provided by the Microsystems Technology Laboratories at the Massachusetts Institute of Technology and Nanofab facility and CCMB laboratory at the University of Texas at Arlington. Funding was provided by Directorate for Engineering (Grant No. 1734983).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Ladani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladani, L. The Potential for Metal–Carbon Nanotubes Composites as Interconnects. J. Electron. Mater. 48, 92–98 (2019). https://doi.org/10.1007/s11664-018-6734-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6734-3

Keywords

Navigation