Skip to main content

Advertisement

Log in

Realizing Bidirectional Threshold Switching in Ag/Ta2O5/Pt Diffusive Devices for Selector Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Memristor crossbar arrays have great potential in brain inspired computing and the next generation high-density memories. The sneak current issue, however, seriously degrades their performance with increasing array size. Selectors with volatile threshold switching (TS) behavior have become important components of the arrays to suppress this issue. Ag/Ta2O5/Pt diffusive devices have promising TS characteristics as selectors, including high ON/OFF ratio and low OFF current. However, their unidirectional TS excludes their application in arrays consisting of bipolar memristors. Bipolar memristors require voltage biases of different polarities to enable the device programming, thus selectors with bidirectional TS are essential for them. In this study, we realize reproducible bidirectional TS behavior on Ag/Ta2O5/Pt diffusive devices. The ON/OFF ratio and the OFF current of the device are ∼107 A and ∼ 10−12 A, respectively. The switching voltage is ∼ 0.35 V and the hold voltage is ∼ 0.125 V. The TS behavior can be also optimized by choosing suitable compliance current during a voltage sweep. Simulations of nanoparticles diffusion are also carried out to study the mechanism of this bidirectional TS process. The simulations show that this behavior can be attributed to the outer diffusion of Ag nanoparticles from an Ag electrode and their accumulation near the Pt electrode under the voltage sweep, which can serve as an additional counter active electrode. This work illustrates that Ag/Ta2O5/Pt diffusive devices are promising candidates for selector applications in bipolar memristor crossbar arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, and W.D. Lu, Nat. Nanotechnol. 12, 784 (2017).

    Article  Google Scholar 

  2. S. Choi, J.H. Shin, J. Lee, P. Sheridan, and W.D. Lu, Nano Lett. 17, 3113 (2017).

    Article  Google Scholar 

  3. F. Alibart, E. Zamanidoost, and D.B. Strukov, Nat. Commun. 4, 2072 (2013).

    Article  Google Scholar 

  4. M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev, and D.B. Strukov, Nature 521, 61 (2015).

    Article  Google Scholar 

  5. S. Kim, M. Ishii, S. Lewis, T. Perri, M. BrightSky, W. Kim, R. Jordan, G.W. Burr, N. Sosa, A. Ray, J.P. Han, C. Miller, K. Hosokawa, and C. Lam, in IEDM Conference Proceedings (2015), pp. 443–446.

  6. P. Yao, H. Wu, B. Gao, S.B. Eryilmaz, X. Huang, W. Zhang, Q. Zhang, N. Deng, L. Shi, H.S.P. Wong, and H. Qian, Nat. Commun. 8, 15199 (2017).

    Article  Google Scholar 

  7. C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song, N. Dávila, C.E. Graves, Z. Li, J.P. Strachan, P. Lin, Z. Wang, M. Barnell, Q. Wu, R.S. Williams, J.J. Yang, and Q. Xia, Nat. Electron. 1, 52 (2018).

    Article  Google Scholar 

  8. D.C. Kau, S. Tang, I.V. Karpov, R. Dodge, B. Klehn, J.A. Kalb, J. Strand, A. Diaz, N. Leung, J. Wu, S. Lee, T. Langtry, K. Chang, C. Papagianni, J. Lee, J. Hirst, S. Erra, E. Flores, N. Righos, H. Castro, and G. Spadini, in IEDM Conference Proceedings (2009), pp. 617–620.

  9. Y. Ho, G.M. Huang, and P. Li, in ICCAD Conference Proceedings (2009), pp. 485–490.

  10. D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru, and C.S. Hwang, Rep. Prog. Phys. 75, 076502 (2012).

    Article  Google Scholar 

  11. B.J. Choi, A.B.K. Chen, X. Yang, and I.W. Chen, Adv. Mater. 23, 3847 (2011).

    Google Scholar 

  12. H.Y. Chen, S. Brivio, C.C. Chang, J. Frascaroli, T.H. Hou, B. Hudec, M. Liu, H. Lv, G. Molas, J. Sohn, S. Spiga, V.M. Teja, E. Vianello, and H.S.P. Wong, J. Electroceram. 39, 21 (2017).

    Article  Google Scholar 

  13. I. Vourkas, D. Stathis, G.C. Sirakoulis, and S. Hamdioui, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24, 206 (2016).

    Article  Google Scholar 

  14. M.A. Zidan, H.A.H. Fahmy, M.M. Hussain, and K.N. Salama, Microelectron. J. 44, 176 (2013).

    Article  Google Scholar 

  15. J. Zhou, K.H. Kim, and W. Lu, IEEE Trans. Electron Devices 61, 1369 (2014).

    Article  Google Scholar 

  16. J.J. Yang, M.X. Zhang, M.D. Pickett, F. Miao, J.P. Strachan, W.D. Li, W. Yi, D.A.A. Ohlberg, B.J. Choi, W. Wu, J.H. Nickel, G. Medeiros-Ribeiro, and R.S. Williams, Appl. Phys. Lett. 100, 113501 (2012).

    Article  Google Scholar 

  17. M.A. Zidan, H. Omran, R. Naous, A. Sultan, H.A.H. Fahmy, W.D. Lu, and K.N. Salama, Sci. Rep. 6, 18863 (2016).

    Article  Google Scholar 

  18. M. Zangeneh and A. Joshi, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22, 1815 (2014).

    Article  Google Scholar 

  19. S. Yu, Z. Li, P.Y. Chen, H. Wu, B. Gao, D. Wang, W. Wu, and H. Qian, in IEDM Conference Proceedings (2016), pp. 416–419.

  20. S. Ambrogio, S. Balatti, V. Milo, R. Carboni, Z.Q. Wang, A. Calderoni, N. Ramaswamy, and D. Ielmini, IEEE Trans. Electron Devices 63, 1508 (2016).

    Article  Google Scholar 

  21. J.J. Huang, Y.M. Tseng, W.C. Luo, C.W. Hsu, and T.H. Hou, in IEDM Conference Proceedings (2011), pp. 733-736.

  22. E. Cha, J. Park, J. Woo, D. Lee, A. Prakash, and H. Hwang, Appl. Phys. Lett. 108, 153502 (2016).

    Article  Google Scholar 

  23. M. Son, J. Lee, J. Park, J. Shin, G. Choi, S. Jung, W. Lee, S. Kim, S. Park, and H. Hwang, IEEE Electron Device Lett. 32, 1579 (2011).

    Article  Google Scholar 

  24. M.J. Lee, D. Lee, H. Kim, H.S. Choi, J.B. Park, H.G. Kim, Y.K. Cha, U.I. Chung, I.K. Yoo and K. Kim, in IEDM Conference Proceedings (2012), pp. 33–35.

  25. Y. Koo, S. Lee, S. Park, M. Yang, and H. Hwang, IEEE Electron Device Lett. 38, 568 (2017).

    Article  Google Scholar 

  26. K. Gopalakrishnan, R.S. Shenoy, C.T. Rettner, K. Virwani, D.S. Bethune, R.M. Shelby, G.W. Burr, A. Kellock, R.S. King, K. Nguyen, A.N. Bowers, M. Jurich, B. Jackson, A.M. Friz, T. Topuria, P.M. Rice, and B.N. Kurdi, in VLSIT Conference Proceedings (2010), pp. 205–206.

  27. K. Virwani, G.W. Burr, R.S. Shenoy, C.T. Rettner, A. Padilla, T. Topuria, P.M. Rice, G. Ho, R.S. King, K. Nguyen, A.N. Bowers, M. Jurich, M. BrightSky, E.A. Joseph, A.J. Kellock, N. Arellano, B.N. Kurdi, and K. Gopalakrishnan, in IEDM Conference Proceedings (2012), pp. 36–39.

  28. S.H. Jo, T. Kumar, S. Narayanan, H. Nazarian, and I.E.E.E. Trans, Electron Devices 62, 3477 (2015).

    Article  Google Scholar 

  29. K.M. Martens, I.P. Radu, G. Rampelberg, J. Verbruggen, S. Cosemans, S. Mertens, X. Shi, M. Schaekers, C. Huyghebaert, S. De-Gendt, C. Detavernier, M. Heyns, and J.A. Kittl, ECS Trans. 45, 151 (2012).

    Article  Google Scholar 

  30. S. Kim, X. Liu, J. Park, S. Jung, W. Lee, J. Woo, J. Shin, G. Choi, C. Cho, S. Park, D. Lee, E. Cha, B.H. Lee, H.D. Lee, S.G. Kim, S. Chung, and H. Hwang, in VLSIT Conference Proceedings (2012), pp. 155–156.

  31. Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J.P. Strachan, Z. Li, Q. Wu, M. Barnell, G.L. Li, H.L. Xin, R.S. Williams, Q. Xia, and J.J. Yang, Nat. Mater. 16, 101 (2017).

  32. A. Wedig, M. Luebben, D.Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K.K. Adepalli, B. Yildiz, R. Waser, and I. Valov, Nat. Nanotechnol. 11, 67 (2016).

    Article  Google Scholar 

  33. R. Midya, Z. Wang, J. Zhang, S.E. Savel’ev, C. Li, M. Rao, M.H. Jang, S. Joshi, H. Jiang, P. Lin, K. Norris, N. Ge, Q. Wu, M. Barnell, Z. Li, H.L. Xin, R.S. Williams, Q. Xia, and J.J. Yang, Adv. Mater. 29, 1604457 (2017).

    Article  Google Scholar 

  34. M. Wuttig and N. Yamada, Nat. Mater. 6, 824 (2007).

    Article  Google Scholar 

  35. T. Tsuruoka, T. Hasegawa, K. Terabe, and M. Aono, Nanotechnology 23, 435705 (2012).

    Article  Google Scholar 

  36. T. Gua, Z. Wang, T. Tada, and S. Watanabe, J. Appl. Phys. 106, 103713 (2009).

    Article  Google Scholar 

  37. T. Gu, T. Tada, and S. Watanabe, ACS Nano 4, 6477 (2010).

    Article  Google Scholar 

  38. Z. Wu, X. Chen, Y. Zhang, C. Dun, D.L. Carroll, and Z. Hu, Adv. Mater. Interfaces 5, 1701210 (2018).

    Article  Google Scholar 

  39. H. Sun, Q. Liu, C. Li, S. Long, H. Lv, C. Bi, Z. Huo, L. Li, and M. Liu, Adv. Funct. Mater. 24, 5679 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by National Nature Science Foundation of China (Nos. 61327902, 61836004, and 61704096), Suzhou-Tsinghua innovation leading program (No. 2016SZ0102), Beijing Natural Science Foundation (No. 4164087), and Brain-Science Special Program of Beijing under Grant Z181100001518006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luping Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, Z., Li, H. et al. Realizing Bidirectional Threshold Switching in Ag/Ta2O5/Pt Diffusive Devices for Selector Applications. J. Electron. Mater. 48, 517–525 (2019). https://doi.org/10.1007/s11664-018-6730-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6730-7

Keywords

Navigation