Skip to main content
Log in

Effects of Multiple Stacking Faults on the Electronic and Optical Properties of Armchair MoS\(_{2}\) Nanoribbons: First-Principles Calculations

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electronic and optical properties of armchair MoS\(_{2}\) nanoribbons with multiple stacking faults are investigated using first-principles calculations. It’s interesting that the band gaps approach zero for armchair MoS\(_{2}\) nanoribbons with two and four stacking faults. The gaps of armchair MoS\(_{2}\) nanoribbons with one stacking fault and three stacking faults are converged to 0.46 eV and 0.36 eV, respectively, which is smaller than perfect MoS\(_{2}\) nanoribbons. The partial charge density of armchair MoS\(_{2}\) nanoribbons with two stacking faults shows that the defect levels are originated from stacking faults. The frequency-dependent optical response (dielectric function, absorption, reflectance and electron energy loss spectra) is also presented. The optical results of monolayer MoS\(_{2}\) are in agreement with previous study. The peaks in the imaginary part of perfect armchair MoS\(_{2}\) nanoribbons are about 2.8 eV, 4.0 eV and 5.4 eV and the peaks of the imaginary part of armchair MoS\(_{2}\) nanoribbons with stacking faults are mainly 2.8 eV and 5.4 eV. They are independent of ribbon width. The peaks in electron energy loss spectra move toward larger wavelengths (redshift) due to the introduction of stacking faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Tawinan and R.L. Walter, Phys. Rev. B 85, 205302 (2012)

    Article  Google Scholar 

  2. R.J. Smith, P.J. King, M. Lotya, C. Wirtz, U. Khan, D. De, A. O’Neill, G.S. Duesberg, J.C. Grunlan, G. Moriarty, J. Chen, J.Z. Wang, A.I. Minett, V. Nicolosi, and J.N. Coleman, Adv. Mater. 23, 3944 (2011)

    Article  CAS  Google Scholar 

  3. Y.M. Shi, W. Zhou, A.Y. Lu, W.J. Fang, Y.H. Lee, A.L. Hsu, S.M. Kim, K.K. Kin, H.Y. Yang, L.J. Li, J.C. Idrobo, and J. Kong, Nano Lett. 12, 2784 (2012)

    Article  CAS  Google Scholar 

  4. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M.W. Chen, and M. Chhowalla, Nano Lett. 11, 5111 (2011)

    Article  CAS  Google Scholar 

  5. Q.Q. Ji, Y.F. Zhang, T. Gao, D.L. Ma, M.X. Liu, Y.B. Chen, X.F. Qiao, P.H. Tan, M. Kan, J. Feng, Q. Sun, and Z.F. Liu, Nano Lett. 13, 3870 (2013)

    Article  CAS  Google Scholar 

  6. Y.H. Lee, X.Q. Zhang, W.J. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Qang, C.S. Chang, L.J. Li, and T.W. Lin, Adv. Mater. 24, 2320 (2012)

    Article  CAS  Google Scholar 

  7. K.F. Mak, C.G. Lee, J. Hone, J. Shan, and T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010)

    Article  Google Scholar 

  8. A. Splendiani, L. Sun, Y. Chang, Y. Li, J. Kim, C.Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010)

    Article  CAS  Google Scholar 

  9. A. Ramasubramaniam, Phys. Rev. B 4, 4677 (2010)

    Google Scholar 

  10. S.W. Han, H. Kwon, S.K. Kim, S. Ryu, W.S. Yun, D.H. Kim, J.H. Hwang, J.-S. Kang, J. Baik, H.J. Shin, and S.C. Hong, Phys. Rev. B 84, 045409 (2011)

    Article  Google Scholar 

  11. J.K. Ellis, M.J. Lucero, and G.E. Scuseria, Appl. Phys. Lett. 99, 261908 (2011)

    Article  Google Scholar 

  12. M. Kan, J.Y. Wang, X.W. Li, S.H. Zhang, Y.W. Li, Y. Kawazoe, Q. Sun, and P. Jena, J. Phys. Chem. C 118, 1515 (2014)

    Article  CAS  Google Scholar 

  13. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011)

    Article  CAS  Google Scholar 

  14. A.R. Beal, J.C. Knights, and W.Y. Liang, J. Phys. C Sol. Stat. Phys. 5, 3540 (1972)

    Article  CAS  Google Scholar 

  15. A.R. Beal and H.P. Hughes, J. Phys. C Sol. Stat. Phys. 12, 881 (1979)

    Article  CAS  Google Scholar 

  16. H.P. Hughes and W.Y. Liang, J. Phys. C Sol. Stat. Phys. 7, 1023 (1974)

    Article  CAS  Google Scholar 

  17. A.H. Reshak and S. Auluck, Phy. Rev. B 68, 125101 (2003)

    Article  Google Scholar 

  18. A.H. Reshak and S. Auluck, Phy. Rev. B 71, 155114 (2005)

    Article  Google Scholar 

  19. D. Lembke and A. Kis, ACS Nano 6, 10070 (2012)

    Article  CAS  Google Scholar 

  20. M.W. Lin, L.Z. Liu, Q. Lan, X.B. Tan, K.S. Dhindsa, P. Zeng, V.M. Naik, M.M.C. Cheng, and Z.X. Zhou, J. Phys. D Appl. Phys. 45, 345102 (2012)

    Article  Google Scholar 

  21. Y.J. Zhang, J.T. Ye, Y. Matsuhashi, and Y. Iwasa, Nano Lett. 12, 1136 (2012)

    Article  CAS  Google Scholar 

  22. Z.Y. Yin, H. Li, H. Li, L. Jiang, Y.M. Shi, Y.H. Sun, G. Lu, Q. Zhang, X.D. Chen, and H. Zhang, ACS Nano 6, 74 (2012)

    Article  CAS  Google Scholar 

  23. B.L. Liu, L. Chen, G. Liu, A.N. Abbas, M. Fathi, and C.W. Zhou, ACS Nano 8, 5304 (2014)

    Article  CAS  Google Scholar 

  24. S. Alkis, T. Öztas, L.E. Aygün, F. Bozkurt, A.K. Okyay, and B. Ortac, Opt. Express 20, 21815 (2012)

    Article  CAS  Google Scholar 

  25. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol. 8, 497 (2013)

    Article  CAS  Google Scholar 

  26. M. Sun, A. Nelson, and J. Adjaye, J. Catal. 226, 32 (2004)

    Article  CAS  Google Scholar 

  27. B. Hinnemann, P. Moses, J. Bonde, K. Jorgensen, J. Nielsen, S. Horch, I. Chorkendorff, and J. Norskov, J. Am. Chem. Soc. 127, 5308 (2005)

    Article  CAS  Google Scholar 

  28. T.F. Jaramillo, K.P. Jorgensen, J. Bonde, J.H. Nielsen, S. Horch, and I. Chorkendorff, Science 317, 100 (2007)

    Article  CAS  Google Scholar 

  29. T. Todorava, R. Prins, and T. Weber, J. Catal. 246, 109 (2007)

    Article  Google Scholar 

  30. J. Wilson and A. Yoffe, Adv. Phys. 18, 193 (1969)

    Article  CAS  Google Scholar 

  31. K. Zeppenfeld, Opt. Commun. 1, 377 (1970)

    Article  CAS  Google Scholar 

  32. P. Johari and V.B. Shenoy, ACS Nano 5, 5903 (2011)

    Article  CAS  Google Scholar 

  33. A. Kumar and P.K. Ahluwalia, Mater. Chem. Phys. 135, 755 (2012)

    Article  CAS  Google Scholar 

  34. H.L. Shi, H. Pan, Y.W. Zhang, and B.I. Yakobson, Phys. Rev. B 87, 155304 (2013)

    Article  Google Scholar 

  35. H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, S.T. Pantelides, and K.I. Bolotin, Nano Lett. 13, 3626 (2013)

    Article  CAS  Google Scholar 

  36. Y.F. Li, Z. Zhou, S.B. Zhang, and Z.F. Chen, J. Am. Chem. Soc. 130, 16739 (2008)

    Article  CAS  Google Scholar 

  37. R. Wang, X.Y. Zhou, X.Y. Xu, J.G. Hu, and J. Pan, J. Phys. D Appl. Phys. 50, 095102 (2017)

    Article  Google Scholar 

  38. C. Ataca, H. Şahin, E. Aktürk, and S. Ciraci, J. Phys. Chem. C 115, 3934 (2011)

    Article  CAS  Google Scholar 

  39. X.M. Li, M.Q. Long, L.L. Cui, J. Xiao, and H. Xu, Chin. Phys. B 23, 047307 (2014)

    Article  Google Scholar 

  40. H. Pan and Y.W. Zhang, J. Phys. Chem. C 116, 11752 (2012)

    Article  CAS  Google Scholar 

  41. W.W. Xu, J.W. Wang, A. Laref, J. Yang, X.Z. Wu, and R. Wang, J. Electron. Mater. 47, 5498 (2018)

    Article  CAS  Google Scholar 

  42. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  43. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1996)

    Article  Google Scholar 

  44. L. Zhang, L.H. Wan, Y.J. Yu, B. Wang, F.M. Xu, Y.D. Wei, and Y. Zhao, J. Phys. Chem. C 119, 22164 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by a Science Challenge Project (No. TZ2016003) and Projects supported by the Natural Science Foundation of China (11104361) and the Fundamental Research Funds for the Central Universities (2018CDXYWU0025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaozhi Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Wang, J., Laref, A. et al. Effects of Multiple Stacking Faults on the Electronic and Optical Properties of Armchair MoS\(_{2}\) Nanoribbons: First-Principles Calculations. J. Electron. Mater. 47, 7114–7128 (2018). https://doi.org/10.1007/s11664-018-6642-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6642-6

Keywords

Navigation