Skip to main content
Log in

Suppressing band gap of MoS2 by the incorporation of four- and eight-membered rings

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A stable planar allotrope of MoS2, formed by introducing four- and eight-membered rings into its hexagonal network (H468), is identified to be a narrow direct-band-gap semiconductor by first principle calculations, which is remarkably different from the large band gap semiconductor of conventional MoS2 and also the zero band gap allotrope consisting of four- and eight-membered rings (H48) only. The medium-sized direct band gap indicates that H468 would find applications in nanoelectronics and near-infrared optoelectronic devices. Furthermore, the distinctive simulated scanning tunneling microscope images under positive and negative biases might be a unique characteristic for the experimental identification of such an allotrope of MoS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515

    Article  Google Scholar 

  • Blöchl P (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  Google Scholar 

  • Castro Neto A, Guinea F, Peres N, Novoselov K, Geim A (2009) The electronic properties of graphene. Rev Mod Phys 81:109

    Article  Google Scholar 

  • Crespi V, Benedict L, Cohen M, Louie S (1996) Prediction of a pure-carbon planar covalent metal. Phys Rev B 53:R13303

    Article  Google Scholar 

  • Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111

    Article  Google Scholar 

  • Jang MS, Kim H, Son Y-W, Atwater HA, Goddard WA (2013) Graphene field effect transistor without an energy gap. Proc Natl Acad Sci USA 110:8786

    Article  Google Scholar 

  • Kim S, Konar A, Hwang W-S, Lee JH, Lee J, Yang J, Jung C, Kim H, Yoo J-B, Choi J-Y, Jin YW, Lee SY, Jena D, Choi W, Kim K (2012) High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat Commun 3:1011

    Article  Google Scholar 

  • Kotakoski J, Krasheninnikov AV, Kaiser U, Meyer JC (2011) From point defects in graphene to two-dimensional amorphous carbon. Phys Rev Lett 106:105505

    Article  Google Scholar 

  • Li W, Guo M, Zhang G, Zhang Y-W (2014) Gapless MoS2 allotrope possessing both massless dirac and heavy fermions. Phys Rev B 89:205402

    Article  Google Scholar 

  • Lisenkov SV, Vinogradov GA, Astakhova TY, Lebedev NG (2005) Nonchiral BN haeckelite nanotubes. J Exp theor Lett 81:346

    Article  Google Scholar 

  • Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805

    Article  Google Scholar 

  • Meric I, Han MY, Young AF, Ozyilmaz B, Kim P, Shepard KL (2008) Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat NANO 3:654

    Article  Google Scholar 

  • Monkhorst H, Pack J (1976) Special points for brillouin-zone integrations. Phys Rev B 13:5188

    Article  Google Scholar 

  • Muscat J, Wander A, Harrison NM (2001) On the prediction of band gaps from hybrid functional theory. Chem Phys Lett 342:397

    Article  Google Scholar 

  • Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S, Yakobson BI, Idrobo J-C, Ajayan PM, Lou J (2013) Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater 12:754

    Article  Google Scholar 

  • Novoselov K (2007) Graphene: mind the gap. Nat Mater 6:720

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666

    Article  Google Scholar 

  • Paolo G, Stefano B, Nicola B, Matteo C, Roberto C, Carlo C, Davide C, Guido LC, Matteo C, Ismaila D, Andrea Dal C, de Stefano G, Stefano F, Guido F, Ralph G, Uwe G, Christos G, Anton K, Michele L, Layla M-S, Nicola M, Francesco M, Riccardo M, Stefano P, Alfredo P, Lorenzo P, Carlo S, Sandro S, Gabriele S, Ari PS, Alexander S, Paolo U, Renata MW (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Article  Google Scholar 

  • Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  Google Scholar 

  • Perera MM, Lin M-W, Chuang H-J, Chamlagain BP, Wang C, Tan X, Cheng MM-C, Tománek D, Zhou Z (2013) Improved carrier mobility in few-layer mos2 field-effect transistors with ionic-liquid gating. ACS Nano 7:4449

    Article  Google Scholar 

  • Song J-W, Giorgi G, Yamashita K, Hirao K (2013) Communication: singularity-free hybrid functional with a Gaussian-attenuating exact exchange in a plane-wave basis. J Chem Phys 138:241101

    Article  Google Scholar 

  • Terrones H, Terrones M (2014) Electronic and vibrational properties of defective transition metal dichalcogenide haeckelites: new 2D semi-metallic systems. 2D Mater 1:011003

    Article  Google Scholar 

  • Terrones H, Terrones M, Hernández E, Grobert N, Charlier JC, Ajayan P (2000) New metallic allotropes of planar and tubular carbon. Phys Rev Lett 84:1716

    Article  Google Scholar 

  • Tersoff J, Hamann DR (1985) Theory of the scanning tunneling microscope. Phys Rev B 31:805

    Article  Google Scholar 

  • van der Zande AM, Huang PY, Chenet DA, Berkelbach TC, You Y, Lee G-H, Heinz TF, Reichman DR, Muller DA, Hone JC (2013) Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat Mater 12:554

    Article  Google Scholar 

  • van Schilfgaarde M, Kotani T, Faleev S (2006) Quasiparticle self-consistent $GW$ theory. Phys Rev Lett 96:226402

    Article  Google Scholar 

  • Zhang C, Johnson A, Hsu C-L, Li L-J, Shih C-K (2014) Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap metallic edge states, and edge band bending. Nano Lett 14:2443

    Article  Google Scholar 

  • Zhao W, Ribeiro RM, Toh M, Carvalho A, Kloc C, Castro Neto AH, Eda G (2013) Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. Nano Lett 13:5627

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank the start-up funding support from Huaiyin Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingting Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Zhang, T. Suppressing band gap of MoS2 by the incorporation of four- and eight-membered rings. J Nanopart Res 17, 220 (2015). https://doi.org/10.1007/s11051-015-3030-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3030-5

Keywords

Navigation