Skip to main content

Advertisement

Log in

Iron-Doped, Mullite-Impregnated PVDF Composite: An Alternative Separator for a High Charge Storage Ceramic Capacitor

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this communication, the formation mechanism of the electroactive β phase, morphology and the dielectric activities of increasing doping concentration (0–1.2 M.W % of mullite) of Fe2+ ion-doped, mullite-impregnated polyvinylidene fluoride (PVDF) nanocomposite have been investigated. Differential thermal analysis (DTA) confirms the formation of an electroactive β phase, and Fourier transform infrared spectroscopy (FTIR) showed that the β phase increases simultaneously and attains the maximum increment of 2.6 times compared to pristine PVDF. X-ray diffraction (XRD) spectra also agreed well with the β-phase increment behaviour and also confirmed the presence of required mullite phases. Field emission scanning electron microscopy (FESEM) images indicate the strong interaction between the polymer matrix and different concentrations of Fe2+ ion-doped mullite particles, resulting in enhanced electroactive β phase formation and large dielectric constant of the nanocomposite films followed by significant low dielectric loss with high ac conductivity compared to pristine PVDF films at room temperature. This doped polymer composite can be used as a high dielectric separator and, using this separator, we have successfully fabricated a high-charge-storage device. This paper also demonstrates that the loading of conductive Fe2+ ions within the highly insulating mullite matrix has a critical concentration for the enhancement and nucleation of the electroactive β phase of the PVDF polymer. In this critical concentration, the highest formation of a β network and maximum numbers of homogeneously distributed iron-doped mullite (FeM) particles in PVDF matrix improves the effective interfacial polarization by Maxwell–Wagner–Sillar (MWS) polarization effect which is responsible for the enhancement of dielectric constant and ac conductivity followed by significant tangent loss. So, it can be concluded that the incorporation of Fe2+-doped mullite into PVDF matrix is an effective way to fabricate a high dielectric separator of high-charge-storage electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Treichel, B. Withers, Academic Press (1999). https://doi.org/10.1016/b978-012513905-2/50003-0

    Google Scholar 

  2. M.J. Pan and C.A. Randall, IEEE Electr. Insul. Mag. 26, 44 (2010).

    Article  CAS  Google Scholar 

  3. K. Hiroshi, M. Youichi, and C. Hirokazu, Jpn. J. Appl. Phys. 42, 1 (2003).

    Article  Google Scholar 

  4. D. Burks and G. Shirn, IEEE (1989). https://doi.org/10.1109/APEC.1989.36988.

    Article  Google Scholar 

  5. T. Homma, Mater. Sci. Eng. R Rep. 23, 243 (1998). https://doi.org/10.1016/S0927-796X(98)00012-6

    Article  Google Scholar 

  6. X. Hao, J. Adv. Dielectr. 3, 1330001 (2013).

    Article  Google Scholar 

  7. L. Zhang, X. Wang, H. Liu, and X. Yao, J. Am. Ceram. Soc. 93, 1049 (2010).

    Article  CAS  Google Scholar 

  8. F. Wen, Z. Xu, W. Xia, X. Wei, and Z. Zhang, J. Adv. Dielectr. 3, 1350010 (2013).

    Article  Google Scholar 

  9. T. Kurihara, M. Horiuchi, Y. Takeuchi, and S. Wakabayashi, in 40th Conference Proceedings on Electronic Components and Technology (1990). 10.1109/ECTC.1990.122170.

  10. R. Tummala, J. Am. Ceram. Soc. 74, 895 (1991).

    Article  CAS  Google Scholar 

  11. L. Priya and J. Jog, J. Appl. Polym. Sci. 89, 2036 (2003).

    Article  CAS  Google Scholar 

  12. N. Jahan, F. Mighri, D. Rodrigue, and A. Ajji, Appl. Clay Sci. 152, 93 (2018).

    Article  CAS  Google Scholar 

  13. B.K. Paul, K. Halder, D. Roy, B. Bagchi, A. Bhattacharya, and S. Das, J. Mater. Sci. Mater. Electron. 25, 5218 (2014).

    Article  CAS  Google Scholar 

  14. H. Schneider, J. Schreuer, and B. Hildmann, J. Eur. Ceram. Soc. 28, 329 (2008).

    Article  CAS  Google Scholar 

  15. T. Mah, J. Am. Ceram. Soc. 66, 699 (1983).

    Article  CAS  Google Scholar 

  16. I.A. Aksay, D.M. Dabbs, and M. Sarikaya, J. Am. Ceram. Soc. 74, 2343 (1991).

    Article  CAS  Google Scholar 

  17. M.A. Camerucci, G. Urretavizcaya, M.S. Castro, and A.L. Cavalieri, J. Eur. Ceram. Soc. 21, 2917 (2001).

    Article  CAS  Google Scholar 

  18. B.K. Paul, D. Roy, S. Batabyal, A. Bhattacharya, P. Nandy, and S. Das, Mater. Chem. Phys. 187, 119 (2017).

    Article  CAS  Google Scholar 

  19. P. Martins, C.M. Costa, M. Benelmekki, G. Botelho, and S.L. Mendez, Cryst. Eng. Comm. 14, 2807 (2012).

    Article  CAS  Google Scholar 

  20. K. Halder, B.K. Paul, D. Roy, A. Bhattacharya, and S. Das, J. Mater. Sci. Mater. Electron. (2014). https://doi.org/10.1007/s10854-014-2521-y.

    Article  Google Scholar 

  21. T. Nestler, R. Schmid, W. Münchgesang, V. Bazhenov, J. Schilm, T. Leisegang, and D.C. Meyer, AIP Conf. Proc. 1597, 155 (2014). https://doi.org/10.1063/1.4878486.

    Article  CAS  Google Scholar 

  22. C.M. Costa, J.L. Gomez Ribelles, S. Lanceros-Méndez, G.B. Appetecchi, and B. Scrosati, J. Power Sources 245, 779 (2014).

    Article  CAS  Google Scholar 

  23. B.K. Paul, D. Roy, S. Manna, P. Nandy, and S. Das, J. Electroceram. (2018). https://doi.org/10.1007/s10832-018-0136-z.

    Article  Google Scholar 

  24. X. Yuan, S. Changgeng, G. Yan, and Z. Zhenghong, J. Phys Conf. Ser. 744, 012077 (2016).

    Article  Google Scholar 

  25. E.I. Unuabonah and A. Taubert, Appl. Clay Sci. 99, 83 (2014).

    Article  CAS  Google Scholar 

  26. Z. Dang, B. Peng, D. Xie, S. Yao, M. Jiang, J. Bai, Z. Dang, B. Peng, D. Xie, S. Yao, and M. Jiang, Appl. Phys. Lett. 92, 112910 (2008).

    Article  Google Scholar 

  27. P. Martins and A.C. Lopes, Prog. Polym. Sci. (2013). https://doi.org/10.1016/j.progpolymsci.2013.07.006.

    Article  Google Scholar 

  28. A.L. Gayen, D. Mondal, D. Roy, P. Bandyopadhyay, S. Manna, R. Basu, S. Das, D.S. Bhar, B.K. Paul, and P. Nandy, J. Mater. Sci. Mater. Electron. 28, 14798 (2017).

    Article  CAS  Google Scholar 

  29. C. Ribeiro, C.M. Costa, D.M. Correia, J.N. Pereira, J. Oliveira, P. Martins, R. Onçalves, V.F. Cardoso, and S.L. Méndez, Nat. Protoc. 13, 4 (2018).

    Article  Google Scholar 

  30. M.S. Sebastian, RSC Adv. 6, 113007 (2016).

    Article  CAS  Google Scholar 

  31. B.K. Paul, K. Haldar, D. Roy, B. Bagchi, A. Bhattacharya, and S. Das, J. Adv. Ceram. 3, 278 (2014).

    Article  CAS  Google Scholar 

  32. B. Bagchi, S. Das, A. Bhattacharya, R. Basu, and P. Nandy, J. Sol–Gel. Sci. Technol. 55, 135 (2010).

    Article  CAS  Google Scholar 

  33. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, M.F. El-Shahat, and K. Powers, J. Mater. Sci. Mater. Electron. 25, 2487 (2014).

    Article  CAS  Google Scholar 

  34. B. Bagchi, S. Das, A. Bhattacharya, R. Basu, and P. Nandy, J. Am. Ceram. Soc. 92, 748 (2009).

    Article  CAS  Google Scholar 

  35. B. Wang and H. Huang, Compos. A 66, 16 (2014).

    Article  CAS  Google Scholar 

  36. P. Martins, C. Caparros, R. Gonçalves, P.M. Martins, M. Benelmekki, G. Botelho, and S. Lanceros-Mendez, J. Phys. Chem. C 116, 15790 (2012).

    Article  CAS  Google Scholar 

  37. J. Nunes-Pereira, C.M. Costa, and S. Lanceros-Mendez, J. Power Sources 281, 378 (2015).

    Article  CAS  Google Scholar 

  38. L. Yang, J. Qiu, H. Ji, K. Zhu, and J. Wang, Compos. A 65, 125 (2014).

    Article  CAS  Google Scholar 

  39. G.M. Tsangaris, G.C. Psarras, and N. Kouloumbi, J. Mater. Sci. 33, 2027 (1998).

    Article  CAS  Google Scholar 

  40. K. Meeporn, S. Maensiri, and P. Thongbai, Appl. Surf. Sci. 380, 67 (2016).

    Article  CAS  Google Scholar 

  41. K.R. Reddy, W. Park, B.C. Sin, J. Noh, and Y. Lee, J. Colloid Interface Sci. 335, 34 (2009).

    Article  CAS  Google Scholar 

  42. M. Panda, V. Srinivas, and A.K. Thakur, Appl. Phys. Lett. 92, 12 (2008).

    Google Scholar 

Download references

Acknowledgements

We are grateful to UGC, Government of India, for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biplab Kumar Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, B.K., Mondal, D., Das, S. et al. Iron-Doped, Mullite-Impregnated PVDF Composite: An Alternative Separator for a High Charge Storage Ceramic Capacitor. J. Electron. Mater. 47, 7075–7084 (2018). https://doi.org/10.1007/s11664-018-6635-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6635-5

Keywords

Navigation