Skip to main content
Log in

Solid-State Diffusion of Bi in Sn: Effects of β-Sn Grain Orientation

  • TMS2018 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Bismuth (Bi) is an alloying element being considered for inclusion in lead-free solder alloys to improve microstructure, properties, and reliability. It has been determined that aging a Bi-bearing alloy will preserve its strength, whereas the strength of SAC alloys is degraded. Examination of microstructure reveals that, over time, homogenization of Bi in the tin (Sn) matrix via solid-state diffusion occurs, which leads to stabilization of mechanical properties. In this study, the effect of Sn grain orientation on the diffusivity of Bi was analyzed. Sn was solidified slowly to produce coarse grains typical of grain morphologies in solder joints. Bi was subsequently sputtered onto the Sn, and samples underwent annealing at 125°C for 24 h. Electron probe microanalysis (EPMA) was utilized to collect compositional data, and diffusivities were extracted for several grain orientations. It was determined that the diffusivity of Bi in Sn has a low anisotropy ratio, with a difference in diffusivity of around an order of magnitude between Sn samples oriented with the concentration gradient perpendicular to the ‘c’ axis and those oriented parallel to the ‘c’ axis. As a result, low angle grain boundaries in the Sn samples can have a profound effect on the diffusivity and confound the orientation relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ma, J. Suhling, Y. Zhang, P. Lall, and M.J. Bozack, in Electronic Components and Technology Conference Proceedings (2007) pp. 653–658.

  2. M. Hasnine, M. Mustafa, J.C. Suhling, B.C. Prorok, M.J. Bozack, and P. Lall, in 2013 Electronic Components and Technology Conference Proceedings (2013) pp. 168–178.

  3. P. Snugovsky, S. Bagheri, M. Romansky, D. Perovic, L. Snugovsky, and J. Rutter, J. Electron. Mater. 25, 2 (2012).

    Google Scholar 

  4. David Witkin, in APEX Expo Proceedings (2013), pp. 540–560.

  5. J. Juarez, P. Snugovsky, E. Kosiba, Z. Bagheri, S. Subramaniam, M. Robinson, J. Heebink, J. Kennedy, and M. Romansky, J. Microelectron. Electron. Packag. 12, 1 (2015).

    Article  Google Scholar 

  6. P. Vianco and J.A. Rejent, J. Electron. Mater. 28, 10 (1999).

    Google Scholar 

  7. A. Delhaise, L. Snugovsky, D. Perovic, P. Snugovsky, and E. Kosiba, J. Surf. Mt. Technol. 27, 3 (2014).

    Google Scholar 

  8. A. Delhaise and D. Perovic, J. Electron. Mater. 47, 3 (2018).

    Article  Google Scholar 

  9. F. Sauer and V. Friese, VZ Elektrochem. 66, 353 (1962).

  10. L.D. Hall, J. Chem. Phys. 21, 87 (1953).

  11. A. Delhaise, P. Snugovsky, I. Matijevic, J. Kennedy, M. Romansky, D. Hillman, D. Adams, S. Meschter, J. Juarez, M. Kammer, I. Straznicky, L. Snugovsky, and D. Perovic, J. Surf. Mt. Technol. 31, 1 (2018).

    Google Scholar 

  12. K. Seshan, Handbook of Thin Film Deposition—Processes and Technologies, 2nd ed. (New York: Noyes Publications, 2002), pp. 14–28.

    Google Scholar 

  13. M.P. Seah, Thin Solid Films 81, 3 (1981).

    Google Scholar 

  14. T.-K. Lee, T. Bieler, C.-U. Kim, and H. Ma, Fundamentals of Lead-Free Solder Interconnect Technology: From Microstructures to Reliability, 1st ed. (New York: Springer, 2015), p. 77.

    Google Scholar 

  15. F.H. Huang and H.B. Huntington, Phys. Rev. B. 19, 4 (1974).

    Google Scholar 

  16. B.F. Dyson, T.R. Anthony, and D. Turnbull, J. Appl. Phys. 38, 8 (1967).

    Article  Google Scholar 

  17. D.C. Yeh and H.B. Huntington, Phys. Rev. Lett. 53, 15 (1984).

    Article  Google Scholar 

  18. R. Coyle, R. Aspandiar, M. Osterman, C. Johnson, R. Popowich, R. Parker, and D. Hillman, in 2017 SMTA International Conference Proceedings (2017) pp. 72–83.

  19. C. Soong, P. Woo, and D. Hoyle, Microsc. Today 20, 6 (2012).

    Article  Google Scholar 

  20. WinWULFF (Stereogram, Stereographic Projection, Wulff-net, Simulation Software) (JCrystal). http://jcrystal.com/products/winwulff/. Accessed 12 June 2017.

  21. Q. Zhang and J. Zhao, Intermetallics 34, 132 (2013).

    Article  Google Scholar 

  22. L. Zhu, Q. Zhang, Z. Chen, C. Wei, G. Cai, L. Jiang, Z. Jin, and J. Zhao, J. Mater. Sci. 52, 6 (2016).

    Google Scholar 

  23. Q. Zhang, Z. Chen, W. Zhong, and J. Zhao, Scr. Mater. 128 (2017).

  24. pyDiffusion, a Python library for diffusion simulation and data analysis (Zhangqi Chen). https://github.com/zhangqi-chen/pyDiffusion. Accessed 21 Feb 2018.

  25. W. Seith, J. Elektrochem. 39, 538 (1933).

    Google Scholar 

  26. S. Belyakov and C. Gourlay, Thermochem. Acta. 654 (2017).

  27. B.-J. Lee, C.-S. Oh, and J.-H. Shim, J. Electron. Mater. 25, 6 (1996).

    Google Scholar 

  28. J. Vizdal, M.H. Braga, A. Kroupa, K.W. Richter, D. Soares, L.F. Malheiros, and J. Ferreira, Comput. Coupling Phase Diagr. Thermochem. 31, 4 (2007).

    Article  Google Scholar 

  29. M.H. Braga, J. Vizdal, A. Kroupa, J. Ferreira, D. Soares, and L.F. Melheiros, Comput. Coupling Phase Diagr. Thermochem. 31, 4 (2007)

  30. P. Shewmon, Diffusion in Solids, 2nd ed. (Warrendale: The Minerals, Metals & Materials Society, 1989), pp. 42–46.

    Google Scholar 

  31. H. Mehrer, Diffusion in Solids—Fundamentals, Methods, Materials, Diffusion-Controlled Processes, 1st ed. (New York: Springer, 2007), pp. 168–169.

    Google Scholar 

  32. H. Mehrer, Diffusion in Solids—Fundamentals, Methods, Materials, Diffusion-Controlled Processes, 1st ed. (New York: Springer, 2007), p. 98.

    Google Scholar 

  33. P. Shewmon, Diffusion in Solids, 2nd ed. (Warrendale: The Minerals, Metals & Materials Society, 1989), pp. 142–145.

    Google Scholar 

  34. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Oxford: Elsevier, 2004), pp. 293–303.

    Google Scholar 

  35. M.R. Spiegel, Schaum’s Outline of Theory and Problems of Vector Analysis and an Introduction to Tensor Analysis (New York: McGraw-Hill, 1959), p. 16.

    Google Scholar 

  36. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed. (London: Chapman & Hall, 1992), pp. 263–279.

    Book  Google Scholar 

  37. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed. (London: Chapman & Hall, 1992), pp. 98–102.

    Book  Google Scholar 

  38. S.-W. Chen, C.-C. Chen, W. Gierlotka, A.-R. Zi, P.-Y. Chen, and H.-J. Wu, J. Electron. Mater. 37, 7 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André M. Delhaise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delhaise, A.M., Chen, Z. & Perovic, D.D. Solid-State Diffusion of Bi in Sn: Effects of β-Sn Grain Orientation. J. Electron. Mater. 48, 32–43 (2019). https://doi.org/10.1007/s11664-018-6621-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6621-y

Keywords

Navigation