Skip to main content

Advertisement

Log in

Study the Electronic Transport Properties for InAs0.3P0.7 the First Derived Substrate from InP via Monte Carlo Methods

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper compares the electronic transport proprieties of two materials, InP and InAs0.3P0.7, in order to present the advantageous characteristics of InAs0.3P0.7 and which in turn leads to inventing of a first substrate derived from InP. This comparative study is performed by using Monte Carlo methods at room temperature and includes the acoustic, polar and inter-valley scattering mechanisms, as well as the energy and drift velocity of charge carriers. The obtained results show that InAs0.3P0.7 presents better behavior in terms of charge carrier energy and drift velocity compared to InP, due to its low set energy describing the band energy of InAs0.3P0.7, as well as high atomic density. On the other hand, the registered energy saturation for charges carriers in the case of InAs0.3P0.7 is reached quickly and under lower applied electric fields compared to InP, due to its high rate of scattering, making InAs0.3P0.7 better than InP for use in high-frequency and low-power operation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.M. Smith, S.M.J. Liu, M.Y. Kao, P. Ho, S.C. Wang, K.H.G. Duh, S.T. Fu, and P.C. Chao, IEEE Microw. Guided Wave 5, 230 (1995). https://doi.org/10.1109/75.392284.

    Article  Google Scholar 

  2. P. Zhu, E. Cruz-Silva, and V. Meunier, Phys. Rev. B 89, 085427 (2014).

    Article  Google Scholar 

  3. S.K. Radhakrishnan, B. Subramaniyan, M. Anandan, and M. Nagarajan, AEU Int. J. Electron. Commun. 83, 462 (2018). https://doi.org/10.1016/j.aeue.2017.10.029.

    Article  Google Scholar 

  4. J. Ajayan, T. Ravichandran, P. Prajoon, J. Charles Pravin, and D. Nirmal, J. Comput. Electron. 17, 265 (2018). https://doi.org/10.1007/s10825-017-1086-4.

    Article  Google Scholar 

  5. J. Ajayan, T. Ravichandran, P. Mohankumar, P. Prajoon, J. Charles Pravin, and D. Nirmal, AEU Int. J. Electron. Commun. 84, 387 (2018). https://doi.org/10.1016/j.aeue.2017.12.022.

    Article  Google Scholar 

  6. M. Asif, C. Chen, D. Peng, W. Xi, and J. Zhi, Solid State Electron. 142, 36 (2018). https://doi.org/10.1016/j.sse.2018.02.001.

    Article  Google Scholar 

  7. S.H. Shin, T.W. Kim, J.I. Song, and J.H. Jang, Solid State Electron. 62, 106 (2011). https://doi.org/10.1016/j.sse.2011.02.002.

    Article  Google Scholar 

  8. L.-D. Wang, D. Peng, Y.-B. Su, C. Jiao, Bi-Chan Zhang, and J. Zhi, Phys. Rev. B 23, 038501 (2014).

    Google Scholar 

  9. J. Ajayan and D. Nirmal, Superlattices Microstruct. 100, 526 (2016). https://doi.org/10.1016/j.epmi.2016.10.011.

    Article  Google Scholar 

  10. V. Radisic, K.M.K.H. Leong, D.W. Scott, C. Monier, X.B. Mei, W.R. Deal, A. Gutierrez-Aitken, Sub-millimeter wave InP technologies and integration techniques Microwave Symposium (IMS) 2015 IEEE MTT-S International Phoenix AZ USA https://doi.org/10.1109/mwsym.2015.7167151 (2015).

  11. J.D. Albrecht, M.J. Rosker, H.B. Wallace, and T. Chang, THz Electronics projects at DARPA: Transistors, TMICs, and amplifiers 2010 IEEE MIT-S International Microwave Dig Anaheim CA USA https://doi.org/10.1109/mwsym.2010.5517972 (2010).

  12. J. Ajayan and D. Nirmal, Superlattices Microstruct. 86, 1 (2015). https://doi.org/10.1016/j.spmi.2015.06.048.

    Article  Google Scholar 

  13. Z. Wang, J. Zhou, Y. Kong, C. Kong, X. Dong, Y. Yang, and T. Chen, J. Semiconduct. 36, 094004 (2015). https://doi.org/10.1088/1674-4926/36/9/094004.

    Article  Google Scholar 

  14. J.C. Pravin, D. Nirmal, P. Prajoon, and J. Ajayan, Physica E Low Dimen. Syst. Nanostruct. 83, 95 (2016). https://doi.org/10.1016/j.physe.2016.04.017.

    Article  Google Scholar 

  15. V. Radisic, K.M.K.H. Leong, X. Mei, S. Sarkozy, W. Yoshida, and W.R. Deal, IEEE Trans. Microwave Theory Techn. 60, 724 (2012). https://doi.org/10.1109/tmtt.2011.2176503.

    Article  Google Scholar 

  16. A. Leuther, A. Tessmann, M. Dammann, H. Massler, M. Schlechtweg, and O. Ambacher Prociding Internaliona conference Indium Phosphide and Related Materials (IPRM) Kobe, Japan. https://doi.org/10.1109/iciprm.2013.6562647 (2013).

  17. N. Sahoo, A.K. Panda, and T. Sahu, Microsyst. Technol. (2018). https://doi.org/10.1007/s00542-018-3727-3.

    Google Scholar 

  18. J. Jin-Cheol, Y. In-Bok, K. Jae-Duk, L. Wang-Yong, and L. Chang-Hoon, IEEE Trans. Microwave Theory Techn. 66(5), 2220 (2018). https://doi.org/10.1109/tmtt.2017.2786698

  19. Y.Q. Chen, Y.C. Zhang, Y. Liu, X.Y. Liao, Y.F. En, W.X. Fang, Y. Huang, and I.E.E.E. Trans, Electron Dev. 65, 1321 (2018). https://doi.org/10.1109/ted.2018.2803443.

    Article  Google Scholar 

  20. D. Maafri, A. Saadi, A. Slimane, and M.C.E. Yagoub, Microwave Opt. Technol Lett. 60, 455 (2018). https://doi.org/10.1002/mop.30982.

    Article  Google Scholar 

  21. W. Xing, Z. Liu, H. Qiu, K. Ranjan, Y. Gao, G.I. Ng, and T. Palacios, IEEE Electron Dev. Lett. 39, 75 (2018). https://doi.org/10.1109/led.2017.2773054.

    Article  Google Scholar 

  22. R. Kailin, C.L. Yung, and C.-F. Huang, IEEE Trans. Electron Dev. 65, 1348 (2018). https://doi.org/10.1109/ted.2018.2809517.

    Article  Google Scholar 

  23. L. Ting-Ting, Z. Kai, Z. Guang-Run, Z. Jian-Jun, K. Yue-Chan, Y. Xin-Xin, C. Tang-Sheng, Chin. Phys. B 27(4) 047307 (2017). https://doi.org/10.1088/1674-1056/27/4/047307.

  24. C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, Phys. Rev. B 12, 2265 (1975).

    Article  Google Scholar 

  25. C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983).

    Article  Google Scholar 

  26. E. Pop, R.W. Dutton, and K.E. Goodson, J. Appl. Phys. 96 4998 (2004). https://doi.org/10.1063/1.1788838

  27. N. Metropolis and S.M. Ulam, J. Am. Stat. Assoc. 44, 335 (1949).

    Article  Google Scholar 

  28. K. Kalna and A. Asenov, Math. Comput. Simul. 62, 357 (2003).

    Article  Google Scholar 

  29. A. Reklaitis, Phys. Lett. A 88, 367 (1982).

    Article  Google Scholar 

  30. D.K. Ferry, Semiconductor Transport (New York: Taylor & Francis, 2000), p. 225.

    Google Scholar 

  31. S. Derrouiche, B. Bouazza, and C. Sayah, Trans. Electr. Electron. Mater. 1 (2018).

  32. W. Fawcett, D.A. Boardman, and S. Swain, J. Phys. Chem. Solids 31, 1963 (1970).

    Article  Google Scholar 

  33. W. Fawcett, C. Hilsum, and H.D. Rees, Solid State Commun. 7, 1257 (1969).

    Article  Google Scholar 

  34. W. Fawcett, Non-ohmic transport in semiconductors, in: Electrons in Crystalline Solids Salam A IAEA Vienna 531 (1973)

  35. S. Bosi and C. Jacoboni, J. Phys. C 9, 315 (1976).

    Article  Google Scholar 

  36. J.G. Ruch, IEEE Trans. Electron. Devices ED-19 652 (1972)

  37. P.A. Lebwohl and P.J. Price, Solid State Commun. 9, 1221 (1971).

    Article  Google Scholar 

  38. F.M. Abou El-Ela and A.Z. Mohamed, J. Mod. Phys. 2, 1324 (2011).

    Article  Google Scholar 

  39. B. K., Quantum Processes in Semiconductors, Ridley 3rd Edition, Oxford, Clarendon (1993).

  40. C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation, Springer, New York https://doi.org/10.1007/978-3-7091-6963-6. (1989).

  41. A. Sadao, J. Appl. Phys. 53, 8775 (1982).

    Article  Google Scholar 

  42. D. Liu, Design, fabrication and characterization of InAlAs/InGaAs/InAsP composition channel HEMTs. Doctoral Thesis, Ohio State University (2008).

  43. A. Kaszynski, étude des phénomènes de transport dans les matériaux semiconducteur par les méthodes de Monte-Carlo: Application a l’Arséniure de Gallium de type N. Doctoral Thesis Faculty of Science and Technology, University of Lille 1 N° = 236 (1979).

  44. A. Guen-Bouazza, C. Sayah, B. Bouazza, and N.E. Chabane-Sari, J. Mod. Phys. 4, 616 (2013). https://doi.org/10.4236/jmp.2013.45089.

    Article  Google Scholar 

  45. A. Hamdoune, B. Bouazza, A. Guen-Bouazza, A. Lallam, and N.-E. Chabane-Sari, Afrique Sci. 3, 186 (2007).

    Google Scholar 

  46. H. Arabshahi, M.R. Khalvati, and M. Rezaee, Rokn-Abadi. Mod. Phys. Lett. B 22, 1695 (2008).

    Article  Google Scholar 

  47. B. Bouazza, A. Guen-Bouazza, L. Amer, C. Sayeh, N.E. Chabane-Sari, and C. Gontrand, Afrique Sci. 1, 55 (2005).

    Google Scholar 

  48. N. Massoum, B. Bouazza, H. Tahir, C. Sayah, and A. Guen, Bouazza. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 6, 1429 (2012).

    Google Scholar 

  49. A. Guen-Bouazza, C. Sayah, B. Bouazza, and N.E. Chabane-Sari, J. Mater. Environ. Sci. 5, 1238 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soufiane Derrouiche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derrouiche, S., Bouazza, B. & Sayah, C. Study the Electronic Transport Properties for InAs0.3P0.7 the First Derived Substrate from InP via Monte Carlo Methods. J. Electron. Mater. 47, 6289–6296 (2018). https://doi.org/10.1007/s11664-018-6535-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6535-8

Keywords

Navigation