Skip to main content
Log in

Preparation of Lithium Ion Adsorbent Using Low-Grade Pyrolusite: Preparation Method and Adsorption Performance

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A lithium ion adsorbent was prepared using low-grade pyrolusite by the following steps: (1) Manganese rich material (MRM) with higher Mn content was prepared by pyrolusite–NaOH molten salt roasting and washing processes to remove impurities in pyrolusite, such as silicon, iron, aluminum, etc. (2) the lithium ion adsorbent was obtained by extraction of lithium with hydrochloric acid from the precursor, which was synthesized via the solid-phase reaction between MRM and LiOH. Compositions of low-grade pyrolusite, MRM, precursor and lithium ion adsorbent were characterized by powder x-ray diffraction and x-ray photoelectron spectroscopy. Adsorption properties and selectivity of the adsorbent are also discussed. The results showed that in the NaOH roasting process, manganese was transformed to Na0.7MnO2.05 and silicon, iron, and aluminum became hydrosoluble Na2SiO3, Na2Al5.2O9.4 and Na3FeO3, respectively. The manganese content in MRM increased from 24.6% to 50% in the conditions of a 600°C 2 h roasting temperature, and the NaOH–pyrolusite mass ratio was 1.5, after the washing process. The Li1.27Mn1.73O4 precursor was synthesized at 750°C with good crystallization yielding a Li/Mn molar ratio of 3 via the LiOH and MRM roasting process. The value of Li+ extraction from the Li1.27Mn1.73O4 precursor reached a maximum in the condition of 0.3 mol/L HCl solution at 40°C for 6 h. Before and after adsorption of Li+, the spinel structure of the adsorbent was not changed. The Li+ adsorption capacity of the obtained adsorbent reached 36.5 mg/g in a LiOH solution, which contained 2 g/L Li+ and remained at 34–35 mg/g after several cycles. The lithium ion adsorbent had better Li+ selectivity in the synthetic salt-lake brine solution, and the separation coefficients of Li+ to Na+ and K+ reached 44.15 and 33.56, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.H. Yoo and C.K. Kim, Ind. Eng. Chem. Res. 48, 9936 (2009).

    Article  Google Scholar 

  2. A.A. Nierenberg, S.L. McElroy, E.S. Friedman, T.A. Ketter, R.C. Shelton, T. Deckersbach, M.G. McInnis, C.L. Bowden, M. Tohen, and J.H. Kocsis, J. Clin. Psychiat. 77, 90 (2016).

    Article  Google Scholar 

  3. S. Yayathi, W. Walker, D. Doughty, and H. Ardebili, J. Power Sources 329, 197 (2016).

    Article  Google Scholar 

  4. I. Jlassi, H. Elhouichet, and M. Ferid, Physica E 81, 219 (2016).

    Article  Google Scholar 

  5. G.R. Harvianto, S.-H. Kim, and C.-S. Ju, Rare Met. 35, 948 (2016).

    Article  Google Scholar 

  6. X.-Y. Nie, S.-Y. Sun, X. Song, and Y. Jian-Guo, J. Membr. Sci. 530, 185 (2017).

    Article  Google Scholar 

  7. S. Reichel, T. Aubel, A. Patzig, E. Janneck, and M. Martin, Miner. Eng. 106, 18 (2017).

    Article  Google Scholar 

  8. T. Wajima, K. Munakata, and U.D.A. Tatsuhiko, Plasma Fus. Res. 7, 2405021 (2012).

    Article  Google Scholar 

  9. Y.J. Lee, F. Wang, and C.P. Grey, J. Am. Chem. Soc. 120, 12601 (1998).

    Article  Google Scholar 

  10. Y. Denis, W. Yu, and K. Yanagida, J. Electrochem. Soc. 158, A1015 (2011).

    Article  Google Scholar 

  11. F. Jiao, J. Bao, A.H. Hill, and P.G. Bruce, Angew. Chem. Int. Edit. 47, 9711 (2008).

    Article  Google Scholar 

  12. D. Fattakhova and P. Krtil, J. Electrochem. Soc. 149, A1224 (2002).

    Article  Google Scholar 

  13. D. Fattakhova, V. Petrykin, J. Brus, T. Kostlánová, J. Dědeček, and P. Krtil, Solid State Ionics 176, 1877 (2005).

    Article  Google Scholar 

  14. Y. Luo, L. Liu, W. Qiao, F. Liu, Y. Zhang, W. Tan, and G. Qiu, Mater. Chem. Phys. 170, 239 (2016).

    Article  Google Scholar 

  15. N. Shibamura, Y.M. Todorov, S. Kagei, and Y. Hata, (Google Patents: 2017).

  16. L. Tongqing, Chin. Mn. Ind. 26, 4 (2008).

    Google Scholar 

  17. C. Zhou, T. Li, T. Xie, and Y. Zhang, Desalin. Water Treat. 57, 1 (2016).

    Article  Google Scholar 

  18. D.Y. Qu, L. Bai, C.G. Castledine, B.E. Conway, and W.A. Adams, J. Electroanal. Chem. 365, 247 (1994).

    Article  Google Scholar 

  19. F. Linyong and K. Ming, Univ. Sci. Technol. 43, 8178 (2009).

    Article  Google Scholar 

  20. L. Yahui, M. Fancheng, F. Fuqiang, W. Weijing, C. Jinglong, and Q. Tao, Dyes Pigm. 125, 384 (2016).

    Article  Google Scholar 

  21. D. Chen, L. Zhao, Y. Liu, T. Qi, J. Wang, and L. Wang, J. Hazard. Mater. 244, 588 (2013).

    Article  Google Scholar 

  22. L.W. Ma, B.Z. Chen, Y. Chen, and X.C. Shi, Microporous Mesoporous Mater. 142, 147 (2011).

    Article  Google Scholar 

  23. Y. Zhang, J. Ma, J. Lu, and D. Wen, Ceram. Int. 40, 4437 (2014).

    Article  Google Scholar 

  24. L. Xiao, Nanchang Univ. 5, 449 (2013).

    Google Scholar 

  25. S. Middlemas, Z.Z. Fang, and P. Fan, Hydrometallurgy 131, 107 (2013).

    Article  Google Scholar 

  26. J. Aromaa, I. Galfi, A. Stefanova, and O. Forsén, Acta Metall. Sloca 19, 170 (2013).

    Google Scholar 

  27. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, and R.S.C. Smart, Appl. Surf. Sci. 257, 2717 (2011).

    Article  Google Scholar 

  28. L. Ma, Z. Nie, X. Xi, L. Zhao, and B. Chen, J. Environ. Chem. Eng. 5, 995 (2017).

    Article  Google Scholar 

  29. W. Meng, L.Y. Zhang, X.H. Jiang, L.D. Lu, and X. Wang, Chin. J. Inorg. Chem. 29, 571 (2013).

    Google Scholar 

  30. L. Liu, L. Wenyan, X. Tan, and X. Jianzhong, J. Synth. Cryst. 45, 1520 (2016).

    Google Scholar 

  31. C. Wang, Y. Le, and B. Cheng, Ceram. Int. 40, 10847 (2014).

    Article  Google Scholar 

  32. G.Q. Zhang, J.Z. Sun, M.A. Peihua, and X.C. Deng, Sea-Lake Salt Chem. Ind. 163, 1003 (2007).

    Google Scholar 

  33. K. Zhang, Y. Deng, Y. Yang, Y. Liao, B. Wang, B. Gong, and W. Yang, RSC Adv. 7, 13509 (2017).

    Article  Google Scholar 

  34. M. Kopec, J.R. Dygas, F. Krok, A. Mauger, F. Gendron, B. Jaszczak-Figiel, A. Gagor, K. Zaghib, and C.M. Julien, Chem. Mater. 21, 2525 (2009).

    Article  Google Scholar 

  35. R. Benedek, M.M. Thackeray, J. Low, and T. Bučko, Phys. Chem. C 116, 4050 (2015).

    Article  Google Scholar 

  36. R. Chitrakar, K. Sakane, A. Umeno, S. Kasaishi, N. Takagi, and K. Ooi, J. Solid State Chem. 169, 66 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (NSFC-51304140) and the Science and Technology Plan Projects of Sichuan Province, China (2015HH0067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Yi Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, BZ., Deng, B., Su, SJ. et al. Preparation of Lithium Ion Adsorbent Using Low-Grade Pyrolusite: Preparation Method and Adsorption Performance. J. Electron. Mater. 47, 6042–6052 (2018). https://doi.org/10.1007/s11664-018-6494-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6494-0

Keywords

Navigation